Investigation of the surfaced metal of the Fe–Cr–Ni–Mn–Mo–Ti–Nb–C system for operation under high-temperature gas-abrasive wear

Author:

Priyatkin D. V.1,Artemyev A. A.1,Lysak V. I.1

Affiliation:

1. Volgograd State Technical University

Abstract

Compositions of flux-cored wires for electric arc surfacing of alloys of the Fe-Cr-Ni-Mn-Mo-Ti-Nb-C alloy system, resistant to high-temperature gas-abrasive wear, were developed. The deposited alloys were studied by optical and electron microscopy, X-ray mi-crospectral and X-ray diffraction analysis. The influence of the carbon content in the alloy on its structural-phase composition, hardness, and wear resistance at normal and elevated temperatures up to 600°C was revealed. It was established that increasing the carbon content in the alloy from 1.2 to 2.8 wt. % leads to increasing the volume fraction of (Cr, Fe)xCy carbides involved in the formation of the eutectic austenite-carbide matrix of the alloy at 6 times. Their morphology also changes from (Fe, Cr)23C6 to (Fe, Cr)7C3. In this case, the content of (Ti, Nb, Mo)xCy and MoxC carbides in the alloy changes insignificantly, and their average size increases by 10%. It has been established that the formation of a composite structure in the alloy contributes to its high resistance to gas-abrasive wear at a temperature of 600°C. The wear resistance of the developed alloy is comparable to a foreign industrial analogue at a much lower cost.

Publisher

FSUE CRISM Prometey

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3