Study of high-temperature behavior of a heat-protective coating of zirconium dioxide by laser heating

Author:

Tsareva I. N.1,Krivina L. A.1,Berdnik O. B.1,Razov E. N.1

Affiliation:

1. Institute for Problems of Machinebuilding of Russian Academy of Sciences – branch of the Federal Research Center “Institute of Applied Physics” (FRC IAP RAS)

Abstract

When studying the high-temperature behavior of the heat-protective coating of zirconium dioxide, the method of laser heating has been tested. The coating was applied by the method of high-energy plasma spraying on the intermetallic sublayer of the Ni–Co–Cr–Al–Y system made of a powder material of the composition (ZrO2 + 7% Y2O3) of spherical morphology.The aim of this work was to study the processes of structural-phase transformations, melting and crystallization occurring in a ceramic coating material under the action of a single laser pulse with a duration of 14 ms with different energies (5, 10, 15, and 20 J). It was found that after spraying, the coating in the initial state has a two-phase composition (T-ZrO2 + K-ZrO2), and a layered microstructure with a columnar structure of zirconium dioxide grains. Laser heating with a pulse energy of 5 J stimulates the phase transformation T-ZrO2 → K-ZrO2, the appearance of porosity and microcracks. With an increase in the pulse energy to 10 and 15 J, the processes of melting and ultrafast crystallization, accompanied by grain refinement, intensively occur on the coating surface. According to the theoretical estimates, the reflow processes affect surface layers with a thickness of 2.2 to 6.6 μm, and phase transformations take place at a depth of ~11 μm. With an increase in the laser pulse energy to E = 20 J, the process of destruction of the coating was initiated by the mechanism of cracking with delamination of fragments of the surface layer 5–10 μm thick.The laser heating method is recommended as an express diagnostics for comparative tests of the heat resistance of ceramic coatings obtained by different methods and from different starting materials.

Publisher

FSUE CRISM Prometey

Reference8 articles.

1. Barvinok , V. A . , Shitarev , I . L . , Bogdanovich , I . I . , Dokukina , I . A . , Karasev , V . M ., Srabatyvaemye, iznosostoykie i teplozashchitnye pokrytiya dlya detaley gazovogo trakta turbiny, kompressora i kamery sgoraniya GTD [Actuated, wear-resistant and heat-protective coatings for the parts of the gas path of the turbine, compressor and combustion chamber of the gas turbine engine], Aviatsionnaya i raketnokosmicheskaya tekhnika, 2009, No 3 (19), pp. 11–28.

2. Zhirikhin , K . V . , Nikolaev , A . A . , Talyzin , V . A . , Shardin , A . O . , Tarasenko , Y u . P . , Tsareva , I . N . , Berdnik , O . B ., Issledovanie termobariernogo pokrytiya na osnove dioksida tsirkoniya dlya zashchity krivolineynykh obvodoobrazuyushchikh poverkhnostey eksperimentalnogo vysokoskorostnogo letatelnogo apparata [Investigation of a thermal barrier coating based on zirconium dioxide to protect curvilinear bypass surfaces of an experimental high-speed aircraft], Materials of the 28th Scientific and Technical Conference on Aerodynamics, Zhukovsky: TsAGI Publishing House, 2017, p. 131.

3. Karnavskaya , T . G . , Kikin , P . Yu . , Perevezentsev, V.N., Razov, E.N., Rusin, E . N ., Izmenenie morfologii poverkhnosti tantal-volframovogo pokrytiya posle vozdeystviya tsiklicheskikh lazernykh impulsov [Changes in the surface morphology of a tantalum-tungsten coating after exposure to cyclic laser pulses], Fizika i khimiya obrabotki materialov, 2018, No 1, pp. 5–10.

4. Kikin , P . Yu. , Perevezentsev , V . N . , Rusin , E . N ., Issledovanie protsessa plavleniya ultramelkozernistogo alyuminievogo splava 1421 pri impulsnom lazernom vozdeystvii [Investigation of the melting process of ultrafine-grained aluminum alloy 1421 under pulsed laser action], Voprosy Materialovedeniya, 2010, No 2 (62), pp. 35–40.

5. Scott , H . G ., Phase relationships in the yttria-rich part of the Yttria – Zirconia System, Journal of Material Science, 1977, No 12 (2), pp. 311–316.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3