EFFECT OF SOLID DISPERSIONS ON THE SOLUBILITY OF METRONIDAZOLE

Author:

Krasnyuk (Jr.) I. I.1ORCID,Naryshkin S. R.1ORCID,Krasnyuk I. I.1ORCID,Belyatskaya A. V.1ORCID,Stepanova O. I.1ORCID,Bobrov I. S.1ORCID,Yankova V. G.1ORCID,Rau J. V.2ORCID,Vorobiev A. N.3ORCID

Affiliation:

1. Sechenov First Moscow State Medical University Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991

2. 1. Sechenov First Moscow State Medical University Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991 2. Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR) Via del Fosso del Cavaliere, 100-00133 Rome, Italy.

3. Peoples’ Friendship University of Russia 6, Miklukho-Maclay St., Moscow, Russia, 117198

Abstract

The aim of the work is to study the effect of solid dispersions using polyethylene glycols of various molecular weights on the solubility of metronidazole in water. Metronidazole is an antimicrobial and antiprotozoal drug. Its low solubility in water limits the use of metronidazole, causing technological difficulties and reducing its bioavailability. The solubility and release of the active substance from dosage forms can be increased using the solid dispersion methods. Solid dispersions are bi- or multicomponent systems consisting of an active substance and a carrier (a highly dispersed solid phase of the active substance or molecular-dispersed solid solutions) with a partial formation of complexes of variable compositions with the carrier material.Materials and methods. The substance of metronidazole used in the experiment, was manufactured by Hubei Hongyuan Pharmaceutical Technology Co., Ltd. (China). To obtain solid dispersions, polyethylene glycols of various molar masses – 1500, 2000 and 3000 g/mol – were used. The solid dispersions were prepared by “the solvent removal method”: metronidazole and the polymer were dissolved in a minimum volume of 96% ethyl alcohol (puriss. p.a./analytical grade) at 65±2°C, and then the solvent was evaporated under vacuum to the constant weight. A vacuum pump and a water bath were used at the temperature of 40±2°C. The dissolution of the samples was studied using a magnetic stirrer with heating, and a thermostatting device. The concentration of metronidazole was determined on a spectrophotometer using quartz cuvettes at the wavelength of 318±2 nm. To filter the solutions, syringe nozzles were used, the pores were 0.45 μm, the filter was nylon. Microcrystalloscopy was performed using a microscope with a digital camera. The optical properties of the solutions were investigated using a quartz cuvette and a mirror camera (the image exposure – 20 sec).Results. Obtaining solid dispersions increases the completeness and rate of the metronidazole dissolution. The solubility of metronidazole from solid dispersions increases by 14–17% in comparison with the original substance. The complex of physical-chemical methods of the analysis, including UV spectrophotometry, microcrystalloscopy and the study of the optical properties of the obtained solutions, makes it possible to suggest the following. The increase in the solubility of metronidazole from solid dispersions is explained by the loss of crystallinity and the formation of a solid solution of the active substance and the solubilizing effect of the polymer with the formation of colloidal solutions of metronidazole at subsequent dissolution of the solid dispersion in water.Conclusion. The preparation of solid dispersions with polyethylene glycols improves the dissolution of metronidazole in water. The results obtained are planned to be used in the development of rapidly dissolving solid dosage forms of metronidazole with an accelerated release and an increased bioavailability.

Publisher

Volgograd State Medical University

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacology,Pharmacy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3