SYNTHESIS, ANTIAGGREGATION AND ANTITROMBOTIC ACTIVITIES OF NEW DERIVATIVES OF HYDROXYBENZOIC ACIDS WITH TAURIC FRAGMENT

Author:

Brel A. K.1ORCID,Atapina N. V.1ORCID,Budaeva Yu. N.1ORCID,Lisina S. V.1ORCID,Tsaruk S. S.1ORCID,Kurkin D. V.1ORCID,Tyurenkov I. N.1ORCID

Affiliation:

1. Volgograd State Medical University 1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131

Abstract

A high prevalence of thrombotic disorders, insufficient effectiveness or safety of antithrombotic therapy is an urgent problem of modern healthcare. The main means of preventing thrombosis is acetylsalicylic acid. Despite its long history, aspirin attracts researchers in the fields of medicinal chemistry, biology, and medicine. The development of new antiplatelet agents, including chemical modification of the acetylsalicylic acid molecule, remains relevant. Modification of the acetylsalicylic acid molecule using amino acids and obtaining their salt forms makes it possible to maintain antiplatelet or antithrombotic properties, as well as to impart additional pharmacodynamic effects. In modern science, a lot of attention is paid to the sulfur-containing amino acid taurine. An analysis of modern scientific literature revealed the protective effect of taurine in diabetes mellitus and cardiovascular diseases, liver dysfunction, gastrointestinal tract, and kidney diseases.The aim of the article is to study synthesis of new compounds, determination of their physical characteristics and assessment of their antiplatelet and antithrombotic activities in vitro and in vivo.Materials and methods. To confirm the structure of the synthesized new derivatives of hydroxybenzoic acids with a taurine fragment by the acelation method, thin layer chromatography and NMR spectra were used. In vitro studies were carried out on the model of ADP-induced platelet aggregation according to the Born G. methods modified by V.A. Gabbasov. In vivo, the studies were carried out on the model of arterial thrombosis induced by the application of iron chloride in the following groups of animals: intact, with experimental diabetes mellitus and three-year-olds; the rate of bleeding from the tail vein was also evaluated.Results. New compounds – derivatives of ortho-, meta- and para-hydroxybenzoic acids with a taurine residue – were synthesized. A procedure for the preparation of N-hydroxybenzoyl taurine compounds and their salt forms have been described; their spectral characteristics and melting points have been determined. The synthesized compounds are superior to acetylsalicylic acid in solubility and are not inferior to it in antiplatelet and antithrombotic activities. The results of the in vitro antiplatelet activity assessment in a wide concentration range from 10-4M to 10-8M, are presented. It has been revealed that the dipotassium salt of N-(2-hydroxybenzoyl)taurine exhibits a less antiplatelet activity than the dipotassium salt of N-(3-hydroxybenzoyl)taurine. The most pronounced antiplatelet activity is exhibited by the compound N-(4-hydroxybenzoyl)taurine. In in vivo experiments on the model of arterial thrombosis in 3-year-olds or animals with experimental diabetes mellitus, carotid artery thrombosis occurred faster than in young or intact animals. A single preliminary oral administration of the test compounds prolonged the time of the thrombus formation, which makes it possible to conclude that they have an antithrombotic effect. In this study, the dipotassium salt of N-(3-hydroxybenzoyl)taurine exhibits a more pronounced activity than that of acetylsalicylic acid.Conclusion. Against the background of the modeled pathologies, the studied drugs showed the expected antithrombotic activity, in terms of the severity not inferior to that found in acetylsalicylic acid.

Publisher

Volgograd State Medical University

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacology,Pharmacy

Reference43 articles.

1. Petrov VI, Shatalova OV, Maslakov AS, Gorbatenko VS. The Analysis of Pharmacotherapy of Deep Venous Thrombosis in the Lower Extremities (a Pharmaco-Epidemiological Study). Flebologiya. 2014;8(3):32–7. Russian

2. Shlyakhto EV, Konradi AA. Key Areas and Prospects for Translational Research in Cardiology. Vestnik Roszdravnadzora. 2015;(5):33–7. Russian

3. Chazov EI. To the Question of Atherothrombotic Disease. Kardiologiia. 2001;41(4):4–7. Russian

4. Brel’ AK, Tyurenkov IN, Lisina SV, Popov SS, Verkholyak DV, Budaeva YN, Volotova EV, Atapina NV, Kurkin DV. Acetoxybenzoylglycylglycines as Potential Cerebroprotective Compounds. Pharmaceutical Chemistry Journal. 2018;52(1):15–8. Russian

5. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal. 2016;37(42):3232–5.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3