Klasifikasi Statistikal Tekstur Sel Pap Smear Dengan Decesion Tree

Author:

Arifin Toni,Riana Dwiza,Hapsari Gita Indah

Abstract

ABSTRAK Penelitian ini menyajikan analisis tekstur dan klasifikasi citra sel pap smear. Pada analisis tekstur difokuskan pada citra nukleus sel Pap smear, metode yang digunakan adalah metode Gray Level Co-occurrence Matrix (GLCM) dengan menggunakan lima parameter yaitu korelasi, energi, homogenitas dan entropi ditambah dengan menghitung nilai Brightness pada citra yang diproses. Citra yang digunakan dalam penelitian ini menggunakan data citra Harlev, yang terdiri dari 280 citra yang sudah dikategorikan ke dalam 7 kelas yaitu 3 kelas sel normal yang meliputi Normal Superficial, Normal Intermediate, and Normal Columnar dan 4 kelas lainnya adalah kategori kelas citra sel abnormal yang meliputi Mild (Light) Dyplasia, Moderate Dysplasia, Severe Dysplasia dan Carcinoma In Situ. Berdasarkan hasil pengolahan citra yang menghasilkan nilai matriks dari setiap parameter yang dihitung, citra sel Pap smear akan diklasifikasikan menurut jenisnya normal atau abnormal dan berdasarkan kelasnya dengan menggunakan decision tree yang diolah dengan algoritma clasifier J48 pada aplikasi weka. Untuk akurasi yang dihasilkan dari klasifikasi sel normal dan abnormal adalah 73% dan untuk akurasi klasifikasi tujuh kelas adalah 34,3%. Kata Kunci : Klasifikasi, Statistikal Tekstur, Sel Pap Smear, Decision Tree. ABSTRACT This research presents the texture analysis and classification of cells pap smear image. Texture analysis focused on the cell nucleus Pap smear image, the research method used the Gray Level Co-occurrence Matrix (GLCM) method, by using five parameter that include contrast, correlation, energy, homogeneity, entropy and brightness. The image used in this research using image data Harlev. The images from 280 subjects are categorized into seven classes. Three classes of which are normal cell image class categories that include Normal Superficial, Normal Intermediate, and Normal Columnar, and the other four classes are categories of abnormal cell image class that include Mild (Light) Dyplasia, Moderate Dysplasia, Severe Dysplasia and Carcinoma In Situ. Based on the results of image processing that produces a matrix of values of each parameter were calculated, Pap smear cell image will be classified according to the type of normal or abnormal and based on the class using the decision tree treated with algorithm clasifier J48 in weka applications. To the resulting accuracy of the classification normal and abnormal cells is 73% and for seven class classification accuracy is 34,3%. Keywords : Classification, Statistical Texture, Cell Pap Smear, Decision Tree

Publisher

Universitas Bina Sarana Informatika

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3