Pannexin1 deletion in lymphatic endothelium affects lymphatic function in a sex‐dependent manner

Author:

Ehrlich Avigail12,Pelli Graziano12,Pick Robert12,Clochard Linda12,Molica Filippo12,Kwak Brenda R.12ORCID

Affiliation:

1. Department of Pathology and Immunology (PATIM) University of Geneva Geneva Switzerland

2. Geneva Center for Inflammation Research (GCIR), Faculty of Medicine University of Geneva Geneva Switzerland

Abstract

AbstractThe lymphatic network of capillaries and collecting vessels ensures tissue fluid homeostasis, absorption of dietary fats and trafficking of immune cells. Pannexin1 (Panx1) channels allow for the passage of ions and small metabolites between the cytosol and extracellular environment. Panx1 channels regulate the pathophysiological function of several tissues in a sex‐dependent manner. Here, we studied the role of Panx1 in lymphatic function, and potential sex‐dependent differences therein, in Prox1‐CreERT2Panx1fl/fl and Panx1fl/fl control mice. Panx1 expression was higher in lymphatic endothelial cells (LECs) of male mice. Lymphatic vessel morphology was not affected in Prox1‐CreERT2Panx1fl/fl male and female mice. Lymphatic drainage was decreased by 25% in male Prox1‐CreERT2Panx1fl/fl mice, but was similar in females of both genotypes. Accordingly, only male Prox1‐CreERT2Panx1fl/fl mice exhibited tail swelling, pointing to interstitial fluid accumulation in males upon Panx1 deletion in LECs. Moreover, serum triglyceride and free fatty acid levels raised less in Prox1‐CreERT2Panx1fl/fl mice of both sexes in an oral lipid tolerance test. Finally, the percentage of migratory dendritic cells arriving in draining lymph nodes was increased in Prox1‐CreERT2Panx1fl/fl female mice, but was comparable between male mice of both genotypes. Our results point to a LEC‐specific role for Panx1 in the functions of the lymphatic system.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3