A refined rodent model of anorexia nervosa: Simulating state‐specific effects of caloric restriction and weight restoration

Author:

Rosa‐Caldwell Megan E.12ORCID,Breithaupt Lauren34,Kaiser Ursula B.5,Garland Eliza1,Pinkham Sheridyn1,Hancock Madisyn1,Jalkut Sophie L.1,Rutkove Seward B.1

Affiliation:

1. Department of Neurology Beth Israel Deaconess Medical Center, Harvard Medical School Boston Massachusetts USA

2. Department of Health Human Performance and Recreation, Exercise Science Research Center University of Arkansas Fayetteville Arkansas USA

3. Eating Disorders Clinical and Research Program, Department of Psychiatry Harvard Medical School, Massachusetts General Hospital Boston Massachusetts USA

4. Mass General Brigham Multidisciplinary Eating Disorders Research Collaborative, Mass General Brigham Boston Massachusetts USA

5. Division of Endocrinology Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA

Abstract

AbstractCurrent rodent models of anorexia nervosa (AN) often have accelerated weight loss that often do not allow for investigation of physiological ramifications of prolonged low weight status characteristic of AN. The purpose of this project was to refine a rodent model of AN to extend the duration of low weight status and allow for investigation of recovery. Eight‐week‐old female Sprague Dawley rats underwent 50%–60% food restriction for 30 days. Rats were group‐housed except during feeding, where AN rats were individually housed and given up to 2 h to consume food. Control (CON) rats were allowed to consume food ad libitum. To simulate recovery, a separate cohort of animals underwent the same food restriction protocol for 30 days, then rats (AN‐R) were allowed to consume food ad libitum to facilitate weight recovery for an additional 30 days. AN‐R rats were compared to age matched controls (CON‐R). AN rats lost ~15% bodyweight and were ~30% lighter than CON. Compared to CON, AN rats had ~35% lower fat content, ~18% lower bone mineral density, ~22% smaller plantaris muscle mass and ~52% smaller ovaries. Upon reintroduction of food, AN‐R rats achieved comparable bodyweights to CON‐R rats after ~10 days. However, after 30 days of recovery, AN‐R rats still had ~14% lower bone mineral density and ~11% smaller plantaris mass and ~21% smaller ovaries. This refinement of rodent AN results in physiological side effects of AN without reaching excessive weight loss requiring euthanasia. Moreover, some physiological consequences of simulated AN are not resolved with weight restoration.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3