Effect of endothelin‐1 on the blood pressure response to acute hypoxia and hyperoxia in healthy young men

Author:

Gonsalves Anna M.1,Baker Sarah E.2,Jacob Dain W.1,Harper Jennifer L.1,Manrique‐Acevedo Camila M.345,Limberg Jacqueline K.123ORCID

Affiliation:

1. Department of Nutrition and Exercise Physiology University of Missouri Columbia Missouri USA

2. Department of Anesthesiology Mayo Clinic Rochester Minnesota USA

3. Dalton Cardiovascular Research Center University of Missouri Columbia Missouri USA

4. Department of Medicine University of Missouri Columbia Missouri USA

5. Research Service Harry S. Truman Memorial Veterans' Hospital Columbia Missouri USA

Abstract

AbstractEndothelin‐1 (ET‐1) and its receptors are linked to increases in sensitivity of the chemoreceptors to hypoxic stress and the development of hypertension in preclinical models. We hypothesized ET receptor antagonism would lower resting blood pressure (BP) as well as the acute BP response to chemoreflex stress. Twenty‐four men (31 ± 5 years, 26 ± 3 kg/m2) completed two study visits (control, bosentan). On each visit, BP was assessed under three conditions: (1) normoxia (FiO2 0.21), (2) chemoreflex excitation via hypoxia (FiO2 0.05–0.21), (3) chemoreflex inhibition via hyperoxia (FiO2 1.00). Bosentan increased plasma ET‐1 (0.94 ± 0.90 to 1.27 ± 0.62 pg/mL, p = 0.004), supporting receptor blockade. Resting diastolic (73 ± 5 to 69 ± 7 mmHg, p = 0.007) and mean (93 ± 7 to 88 ± 7 mmHg, p = 0.005) BP were reduced following bosentan compared to control with no change in systolic BP (p = 0.507). The mean BP response to both acute hypoxia (−0.48 ± 0.38 to −0.25 ± 0.31 mmHg/%, p = 0.004) and hyperoxia (area under the curve −93 ± 108 to −27 ± 66 AU, p = 0.018) were attenuated following bosentan. Acute ET receptor inhibition attenuates the rise in BP during chemoreflex excitation as well as the fall in BP during chemoreflex inhibition in healthy young men. These data support a role for ET‐1 in control of resting BP, possibly through a chemoreceptor‐mediated mechanism.

Funder

National Institutes of Health

Mayo Clinic

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3