Altered expression of synaptic proteins and adhesion molecules in the hippocampus and cortex following the onset of diabetes in nonobese diabetic mice

Author:

Yokokawa Takumi123ORCID,Kido Kohei45,Sato Koji6,Hayashi Tatsuya1,Fujita Satoshi4ORCID

Affiliation:

1. Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies Kyoto University Kyoto Japan

2. Research Organization of Science and Technology Ritsumeikan University Kusatsu Shiga Japan

3. Division of Food Science and Biotechnology, Graduate School of Agriculture Kyoto University Kyoto Japan

4. Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan

5. Faculty of Sports and Health Science Fukuoka University Fukuoka Japan

6. Graduate School of Human Development and Environment Kobe University Kobe Japan

Abstract

AbstractMounting evidence links Type 1 diabetes (T1D) with cognitive dysfunction, psychiatric disorders, and synaptic alterations; however, the underlying mechanism remains unclear. Numerous synaptic proteins and synaptic adhesion molecules (SAMs) that orchestrate synaptic formation, restructuring, and elimination are essential for proper brain function. Currently, it is unclear whether the pathogenesis of T1D is related to the expression of synaptic proteins and SAMs. Here, we investigated whether T1D mice exhibited altered synaptic protein and SAM expression in the hippocampus and cortex. We discovered that T1D mice exhibited partially decreased levels of excitatory and inhibitory synapse proteins and SAMs, such as neurexins, neuroligins, and synaptic cell adhesion molecules. We also found that compared to control mice, T1D mice showed a marginal decrease in body weight and a significant increase in plasma glycoalbumin levels (a hyperglycemia marker). These results provide novel molecular‐level insights into synaptic dysfunction in mice with T1D.

Funder

Japan Society for the Promotion of Science

Takeda Pharmaceutical Company

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3