Affiliation:
1. Department of Cell and Developmental Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
2. Department of Bioengineering University of Illinois at Urbana–Champaign Urbana Illinois USA
3. Nick J. Holonyak Micro and Nanotechnology Laboratory University of Illinois at Urbana–Champaign Urbana Illinois USA
Abstract
AbstractSkeletal muscle regeneration is an essential process to restore muscle function after injury and is influenced by various factors. Despite the known importance of sex hormones in muscle regeneration, whether and what sex difference exists in this process is still unclear. In this study, we provide evidence for a clear sex difference in muscle regeneration in mice. At 7 and 14 days after barium chloride‐induced muscle injury, female mice showed a faster recovery of muscle fiber size than males. Consistently, muscle force in female mice was restored faster than in males after injury, and this functional difference was maintained at 14 months of age when regenerative capacity declined. Myosin heavy chain isoform profiling and fatigability test revealed dynamic remodeling of myosin heavy chain isoform expression including a type IIB to IIA/X MHC transition and reduced fatigability in regenerated muscles compared to uninjured muscles. A significant sex difference was detected in myosin heavy chain IIX content, although this did not lead to different fatigability. Together, our results suggest that sex is an important determinant of the recovery of regenerating skeletal muscle and is partially involved in the remodeling of myosin heavy chain isoforms during muscle regeneration.
Funder
National Institute of Arthritis and Musculoskeletal and Skin Diseases
National Institute of General Medical Sciences
Subject
Physiology (medical),Physiology