Optimization of resting tension for wire myography in male rat pulmonary arteries

Author:

Choi Rira12,Narayanan Roshini3,Jandu Sandeep2,Savage William1,Kang Sara2,Wodu Bulouere2,Nandakumar Kavitha2,Santhanam Lakshmi123,Steppan Jochen2ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland USA

2. Department of Anesthesiology and Critical Care Medicine Johns Hopkins School of Medicine Baltimore Maryland USA

3. Department of Biomedical Engineering Johns Hopkins University Baltimore Maryland USA

Abstract

AbstractWire myography to test vasomotor functions of blood vessels ex‐vivo are well‐established for the systemic circulation, however, there is no consensus on protocols for pulmonary arteries. We created a standardized wire myography protocol for healthy rat PAs and validated this in a pulmonary hypertension (PH) model. Vessels stretched to higher initial tensions (5.0, 7.5 and 10.0 mN) exhibited a uniform response to phenylephrine, a larger dynamic range, and lower EC50 values. The endothelium‐mediated relaxation showed that moderate tensions (7.5 and 10.0 mN) produced robust responses with higher maximum relaxation and lower EC50 values. For endothelium independent responses, the higher initial tension groups had lower and more consistent EC50 values than the lower initial tension groups. Pulmonary arteries from rats with PH were more responsive to vasoactive drugs when subjected to a higher initial tension. Notably, vessels in the PH group subjected to 15.0 mN exhibited high dynamic ranges in contractile and relaxation responses without tearing. Lastly, we observed attenuated cholinergic responses in these vessels—consistent with endothelial dysfunction in PH. Therefore, a moderate initial tension of 7.5–10.0 mN is optimal for healthy rat pulmonary arteries and a higher initial tension of 15.0 mN is optimal for pulmonary arteries from animals with PH.

Funder

Johns Hopkins University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3