IMT504 protects beta cells against apoptosis and maintains beta cell identity, without modifying proliferation

Author:

Converti Ayelén1,Bianchi María Silvia1,Martinez Mario D.23,Montaner Alejandro D.4,Lux‐Lantos Victoria1ORCID,Bonaventura María Marta15

Affiliation:

1. Instituto de Biología y Medicina Experimental (IBYME‐CONICET) Buenos Aires Argentina

2. CONICET‐Universidad de Buenos Aires, UMYMFOR Buenos Aires Argentina

3. Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires Argentina

4. Instituto de Ciencia y Tecnología (ICT‐Milstein) Buenos Aires Argentina

5. Universidad Nacional de San Martin (UNSAM), ECyT Buenos Aires Argentina

Abstract

AbstractWe have demonstrated that oligodeoxynucleotide IMT504 promotes significant improvement in the diabetic condition in diverse animal models. Based on these results, here we evaluated whether these effects observed in vivo could be due to direct effects on β‐cells. We demonstrate by immunofluorescence that IMT504 enters the cell and locates in cytoplasm where it induces GSK‐3β phosphorylation that inactivates this kinase. As GSK‐3β tags Pdx1 for proteasomal degradation, by inactivating GSK‐3β, IMT504 induces an increase in Pdx1 protein levels, demonstrated by Western blotting. Concomitantly, an increase in Ins2 and Pdx1 gene transcription was observed, with no significant increase in insulin content or secretion. Enhanced Pdx1 is promising since it is a key transcription factor for insulin synthesis and is also described as an essential factor for the maintenance β‐cell phenotype and function. Dose‐dependent inhibition of H2O2‐induced apoptosis determined by ELISA as well as decreased expression of Bax was also observed. These results were confirmed in another β‐cell line, beta‐TC‐6 cells, in which a cytokine mix induced apoptosis that was reversed by IMT504. In addition, an inhibitor of IMT504 entrance into cells abrogated the effect IMT504. Based on these results we conclude that the β‐cell recovery observed in vivo may include direct effects of IMT504 on β‐cells, by maintaining their identity/phenotype and protecting them from oxidative stress and cytokine‐induced apoptosis. Thus, this work positions IMT504 as a promising option in the framework of the search of new therapies for type I diabetes treatment.

Funder

Fondo para la Investigación Científica y Tecnológica

Fundación René Barón

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3