Impaired cardiac glycolysis and glycogen depletion are linked to poor myocardial outcomes in juvenile male swine with metabolic syndrome and ischemia

Author:

Broadwin Mark1,Harris Dwight D.1,Sabe Sharif A.1,Sengun Elif2,Sylvestre Amber J.1,Alexandrov Boian S.3,Sellke Frank W.1ORCID,Usheva Anny1ORCID

Affiliation:

1. Division of Cardiothoracic Surgery, Department of Surgery Warren Alpert Medical School of Brown University Providence Rhode Island USA

2. Division of Cardiology, Department of Medicine Warren Alpert Medical School of Brown University Providence Rhode Island USA

3. Los Alamos National Laboratory Los Alamos New Mexico USA

Abstract

AbstractObesity continues to rise in the juveniles and obese children are more likely to develop metabolic syndrome (MetS) and related cardiovascular disease. Unfortunately, effective prevention and long‐term treatment options remain limited. We determined the juvenile cardiac response to MetS in a swine model. Juvenile male swine were fed either an obesogenic diet, to induce MetS, or a lean diet, as a control (LD). Myocardial ischemia was induced with surgically placed ameroid constrictor on the left circumflex artery. Physiological data were recorded and at 22 weeks of age the animals underwent a terminal harvest procedure and myocardial tissue was extracted for total metabolic and proteomic LC/MS–MS, RNA‐seq analysis, and data underwent nonnegative matrix factorization for metabolic signatures. Significantly altered in MetS versus. LD were the glycolysis‐related metabolites and enzymes. In MetS compared with LD Glycogen synthase 1 (GYS1)‐glycogen phosphorylases (PYGM/PYGL) expression disbalance resulted in a loss of myocardial glycogen. Our findings are consistent with the concept that transcriptionally driven myocardial changes in glycogen and glucose metabolism‐related enzymes lead to a deficiency of their metabolite products in MetS. This abnormal energy metabolism provides insight into the pathogenesis of the juvenile heart in MetS. This study reveals that MetS and ischemia diminishes ATP availability in the myocardium via altering the glucose‐G6P‐pyruvate axis at the level of metabolites and gene expression of related enzymes. The observed severe glycogen depletion in MetS coincides with disbalance in expression of GYS1 and both PYGM and PYGL. This altered energy substrate metabolism is a potential target of pharmacological agents for improving juvenile myocardial function in MetS and ischemia.

Funder

Los Alamos National Laboratory

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3