Development and characterization of canine‐specific computational models to predict pulsatile arterial hemodynamics and ventricular‐arterial coupling

Author:

Hotek Julia C.1ORCID,Chirinos Julio A.2,Detwiler Theodore J.1,Regan Hillary K.1,Regan Christopher P.1

Affiliation:

1. Preclinical Development (PCD) Merck & Co., Inc. West Point Pennsylvania USA

2. Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA

Abstract

AbstractPulsatile hemodynamics analyses provide important information about the ventricular‐arterial system which cannot be inferred by standard blood pressure measurements. Pulse wave analysis (PWA), wave separation analysis (WSA), and wave power analysis (WPA) characterize arterial hemodynamics with limited preclinical applications. Integrating these tools into preclinical testing may enhance understanding of disease or therapeutic effects on cardiovascular function. We used a canine rapid ventricular pacing (RVP) heart failure model to: (1) Characterize hemodynamics in response to RVP and (2) assess analyses from flow waveforms synthesized from pressure compared to those derived from measured flow. Female canines (n = 7) were instrumented with thoracic aortic pressure transducers, ventricular pacing leads, and an ascending aortic flow probe. Data were collected at baseline, 1 week, and 1 month after RVP onset. RVP progressively reduced stroke volume (SV), the PWA SV estimator, and WSA and WPA pulsatility and wave reflection indices. Indices derived from synthesized flow exhibited similar directional changes and high concordance with measured flow calculations. Our data demonstrate the value of analytical hemodynamic methods to gain deeper insight into cardiovascular function in preclinical models. These approaches can provide complementary value to standard endpoints in evaluating potential effects of pharmaceutical agents intended for human use.

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3