Characterization of Hofbauer cell polarization and VEGF localization in human term placenta from active and inactive pregnant individuals

Author:

Goudreau Alexandra D.1ORCID,Everest Catherine1ORCID,Tanara Layli2,Tzaneva Velislava1ORCID,Adamo Kristi B.1ORCID

Affiliation:

1. Faculty of Health Sciences University of Ottawa Ottawa Ontario Canada

2. Faculty of Science University of Ottawa Ottawa Ontario Canada

Abstract

AbstractPhysical activity (PA) during pregnancy is associated with parental and fetal health benefits; however, the mechanisms through which these benefits arise are yet to be fully understood. In healthy pregnancies Hofbauer cells (HBCs) comprise a heterogenous population containing CD206+ and CD206 phenotypes. In healthy pregnancies, CD206+ represent the majority, while dysregulations have been associated with pathological conditions. HBCs have also been identified as potential drivers of angiogenesis. As PA induces changes in macrophage polarization in non‐pregnant populations, this novel study examined the relationship between PA and HBC polarization and to identify which HBC phenotypes express VEGF. Participants were classified as active or inactive, and immunofluorescence cell‐labelling was used to quantify total HBCs, CD206+ HBCs, and the proportion of total HBCs expressing CD206. Immunofluorescent colocalization assessed which phenotypes expressed VEGF. Protein and mRNA expression of CD68 and CD206 were measured in term placenta tissue using Western blot and RT‐qPCR, respectively. Both CD206+ and CD206 HBCs expressed VEGF. The proportion of CD206+ HBCs was elevated in active individuals; however, CD206 protein expression was observed to be lower in active participants. Combined with a lack of significant differences in CD206 mRNA levels, these findings suggest potential PA‐mediated responses in HBC polarization and CD206 translational regulation.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3