Restraint stress during neonatal hypoxia‐ischemia alters brain injury following normothermia and hypothermia

Author:

Gundersen Julia K.1ORCID,Sabir Hemmen12,Wood Thomas R.13,Osredkar Damjan14,Falck Mari15,Loeberg Else M.6,Walloe Lars1,Menassa David A.17,Thoresen Marianne18ORCID

Affiliation:

1. Department of Physiology Institute of Basic Medical Sciences, University of Oslo Oslo Norway

2. Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Bonn Germany

3. Department of Pediatrics University of Washington Medical School Seattle Washington USA

4. Department of Pediatrics Ljubljana University Hospital Ljubljana Slovenia

5. Department of Pediatrics Oslo University Hospital Oslo Norway

6. Department of Pathology Oslo University Hospital Oslo Norway

7. The Queen's College| University of Oxford Oxford UK

8. Translational Health Sciences, St. Michael's Hospital, Bristol Medical School University of Bristol Bristol UK

Abstract

AbstractRodent models of neonatal hypoxic–ischemic (HI) injury require a subset of animals to be immobilized for continuous temperature monitoring during the insult and subsequent treatment. Restrained animals are discarded from the analysis due to the effect of restraint on the brain injury as first demonstrated by Thoresen et al 1996. However, the effects of restraint on responses to hypothermic (HT) post‐insult therapy are not well described. We examine the effects of restraint associated with different probe placements on HI brain injury. We have conducted a meta‐analysis of 23 experiments comparing probe rats (skin n = 42, rectal n = 35) and free‐moving matched non‐probe controls (n = 80) that underwent HI injury (left common carotid artery ligation and 90 min 8% O2) at postnatal day 7 (P7), followed by 5 h of NT (37°C) or HT (32°C). On P14, brain regions were analyzed for injury (by neuropathology and area loss), microglial reactivity and brain‐derived neurotrophic factor (BDNF). HI injury was mitigated in NT skin and rectal probe rats, with greater neuroprotection among the rectal probe rats. Following HT, the skin probe rats maintained the restraint‐associated neuroprotection, while brain injury was significantly exacerbated among the rectal probe rats. Microglial reactivity strongly correlated with the acquired injury, with no detectable difference between the groups. Likewise, we observed no differences in BDNF signal intensity. Our findings suggest a biphasic neuroprotection from restraint stress, which becomes detrimental in combination with HT and the presumed discomfort from the rectal probe. This finding is useful in highlighting unforeseen effects of common experimental designs or routine clinical management.

Funder

Norges Forskningsråd

Sparks

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3