Cervical spinal cord hemisection impacts sigh and the respiratory reset in male rats

Author:

Fogarty Matthew J.1ORCID,Zhan Wen‐Zhi1,Mantilla Carlos B.12,Sieck Gary C.1

Affiliation:

1. Department of Physiology and Biomedical Engineering Mayo Clinic Rochester Minnesota USA

2. Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester Minnesota USA

Abstract

AbstractCervical spinal cord injury impacts ventilatory and non‐ventilatory functions of the diaphragm muscle (DIAm) and contributes to clinical morbidity and mortality in the afflicted population. Periodically, integrated brainstem neural circuit activity drives the DIAm to generate a markedly augmented effort or sigh—which plays an important role in preventing atelectasis and thus maintaining lung function. Across species, the general pattern of DIAm efforts during a normal sigh is variable in amplitude and the extent of post‐sigh “apnea” (i.e., the post‐sigh inter‐breath interval). This post‐sigh inter‐breath interval acts as a respiratory reset, following the interruption of regular respiratory rhythm by sigh. We examined the impact of upper cervical (C2) spinal cord hemisection (C2SH) on the transdiaphragmatic pressure (Pdi) generated during sighs and the post‐sigh respiratory reset in rats. Sighs were identified in Pdi traces by their characteristic biphasic pattern. We found that C2SH results in a reduction of Pdi during both eupnea and sighs, and a decrease in the immediate post‐sigh breath interval. These results are consistent with partial removal of descending excitatory synaptic inputs to phrenic motor neurons that results from C2SH. Following cervical spinal cord injury, a reduction in the amplitude of Pdi during sighs may compromise the maintenance of normal lung function.

Funder

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of eupneic breathing using machine learning;Journal of Neurophysiology;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3