Profiling of adenine‐derived signaling molecules, cytokinins, in myotubes reveals fluctuations in response to lipopolysaccharide‐induced cell stress

Author:

Tobin Stephanie W.12ORCID,Seneviratne Dev23,Phan Lorna1,Seegobin Mark12,Rico Alexander L.1,Westby Beth1,Kisiala Anna1,Martic Sanela23,Brunetti Craig R.12,Emery R. J. Neil12

Affiliation:

1. Department of Biology Trent University Peterborough Ontario Canada

2. Environmental and Life Sciences Graduate Program Trent University Peterborough Ontario Canada

3. Department of Forensic Science Trent University Peterborough Canada

Abstract

AbstractCytokinins (CTKs) are a diverse collection of evolutionarily conserved adenine‐derived signaling molecules classically studied as phytohormones; however, their roles and production have been less studied in mammalian systems. Skeletal muscles are sensitive to cellular cues such as inflammation and in response, alter their secretome to regulate the muscle stem cell and myofiber niche. Using cultured C2C12 muscle cells, we profiled CTK levels to understand (1) whether CTKs are part of the muscle secretome and (2) whether CTKs are responsive to cellular stress. To induce cellular stress, C2C12 myotubes were treated with lipopolysaccharides (LPS) for 24 h and then media and cell fractions were collected for ultra high‐performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC‐(ESI+)‐HRMS/MS) for metabolomics and CTK profiling. Across LPS‐treated and control cells, 11 CTKs were detected in the extracellular space while 6 were detected intracellularly. We found that muscle cells are enriched in isopentenyladenine (iP) species (from free base, riboside to nucleotide forms), and that extracellular levels are increased after LPS treatment. Our study establishes that muscle cells express various forms of CTKs, and that CTK levels are responsive to LPS‐induced cell stress, suggesting a role for CTKs in intra‐ and extracellular signaling of mammalian cells.

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3