Effect of high‐frequency membrane potential alternation between depolarization and hyperpolarization on dorsal root ganglion neurons of rats

Author:

Shen Zhijun1,Beckel Jonathan2,de Groat William C.2,Tai Changfeng123ORCID

Affiliation:

1. Department of Urology University of Pittsburgh Pittsburgh Pennsylvania USA

2. Department of Pharmacology and Chemical Biology University of Pittsburgh Pittsburgh Pennsylvania USA

3. Department of Bioengineering University of Pittsburgh Pittsburgh Pennsylvania USA

Abstract

AbstractThe purpose of this study was to determine how sensory neurons respond to high‐frequency membrane potential alternation between depolarization and hyperpolarization. Membrane currents were recorded from dissociated dorsal root ganglion (DRG) neurons of adult rats using the whole cell patch clamp technique in voltage clamp mode. Stepwise depolarization of the membrane was applied first to determine the threshold membrane potential for inducing an action potential (AP) current. Then, membrane potential alternation between depolarization (to +20 mV) and hyperpolarization (to −110 mV) was applied to the neuron for 10 s at different frequencies (10 Hz to 1 kHz). The tested DRG neurons had APs of either a long duration (>10 ms) or a short duration (<10 ms). Membrane potential alternation at ≥500 Hz completely disrupted the AP generation, disabled the ion channel gating function, and produced membrane current alternating symmetrically across zero. Replacing extracellular sodium with potassium increased the amplitude of the membrane current response and caused the membrane current to be larger during hyperpolarization than during depolarization. These results support the hypothesis that high‐frequency biphasic stimulation blocks axonal conduction by driving the potassium channel open constantly. Understanding neural membrane response to high‐frequency membrane potential alternation is important to reveal the possible mechanisms underlying axonal conduction block induced by high‐frequency biphasic stimulation.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3