Extracellular vesicles and insulin‐mediated vascular function in metabolic syndrome

Author:

Ragland Tristan J.1,Heiston Emily M.23,Ballantyne Anna3,Stewart Nathan R.13,La Salvia Sabrina4,Musante Luca5,Luse Melissa A.6,Isakson Brant E.67,Erdbrügger Uta8,Malin Steven K.1391011ORCID

Affiliation:

1. Department of Kinesiology & Health Rutgers University New Brunswick New Jersey USA

2. Department of Internal Medicine, Pauley Heart Center Virginia Commonwealth University Richmond Virginia USA

3. Department of Kinesiology University of Virginia Charlottesville Virginia USA

4. Cardiovascular Research Institute Mount Sinai New York New York USA

5. School of Veterinary Medicine University of Pennsylvania Philadelphia Pennsylvania USA

6. Robert M Berne Cardiovascular Research Center University of Virginia School of Medicine Charlottesville Virginia USA

7. Department of Molecular Physiology and Biophysics University of Virginia School of Medicine Charlottesville Virginia USA

8. Division of Nephrology, Department of Medicine University of Virginia Charlottesville Virginia USA

9. Division of Endocrinology, Metabolism & Nutrition Department of Medicine New Brunswick New Jersey USA

10. The New Jersey Institute for Food, Nutrition and Health Rutgers University New Brunswick New Jersey USA

11. Institute of Translational Medicine and Science Rutgers University New Brunswick New Jersey USA

Abstract

AbstractMetabolic Syndrome (MetS) raises cardiovascular disease risk. Extracellular vesicles (EVs) have emerged as important mediators of insulin sensitivity, although few studies on vascular function exist in humans. We determined the effect of insulin on EVs in relation to vascular function. Adults with MetS (n = 51, n = 9 M, 54.8 ± 1.0 years, 36.4 ± 0.7 kg/m2, ATPIII: 3.5 ± 0.1 a.u., VO2max: 22.1 ± 0.6 ml/kg/min) were enrolled in this cross‐sectional study. Peripheral insulin sensitivity (M‐value) was determined during a euglycemic clamp (40 mU/m2/min, 90 mg/dl), and blood was collected for EVs (CD105+, CD45+, CD41+, TX+, and CD31+; spectral flow cytometry), inflammation, insulin, and substrates. Central hemodynamics (applanation tonometry) was determined at 0 and 120 min via aortic waveforms. Pressure myography was used to assess insulin‐induced arterial vasodilation from mouse 3rd order mesenteric arteries (100–200 μm in diameter) at 0.2, 2 and 20 nM of insulin with EVs from healthy and MetS adults. Adults with MetS had low peripheral insulin sensitivity (2.6 ± 0.2 mg/kg/min) and high HOMA‐IR (4.7 ± 0.4 a.u.) plus Adipose‐IR (13.0 ± 1.3 a.u.). Insulin decreased total/particle counts (p < 0.001), CD45+ EVs (p = 0.002), AIx75 (p = 0.005) and Pb (p = 0.04), FFA (p < 0.001), total adiponectin (p = 0.006), ICAM (p = 0.002), and VCAM (p = 0.03). Higher M‐value related to lower fasted total EVs (r = −0.40, p = 0.004) while higher Adipose‐IR associated with higher fasted EVs (r = 0.42, p = 0.004) independent of VAT. Fasting CD105+ and CD45+ derived total EVs correlated with fasting AIx75 (r = 0.29, p < 0.05) and Pb (r = 0.30, p < 0.05). EVs from MetS participants blunted insulin‐induced vasodilation in mesenteric arteries compared with increases from healthy controls across insulin doses (all p < 0.005). These data highlight EVs as potentially novel mediators of vascular insulin sensitivity and disease risk.

Funder

National Heart, Lung, and Blood Institute

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3