Method for estimating pulsatile wall shear stress from one‐dimensional velocity waveforms

Author:

Muskat J. C.1ORCID,Babbs C. F.1,Goergen C. J.1ORCID,Rayz V. L.12ORCID

Affiliation:

1. Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA

2. Mechanical Engineering Purdue University West Lafayette Indiana USA

Abstract

AbstractWall shear stress (WSS)—a key regulator of endothelial function—is commonly estimated in vivo using simplified mathematical models based on Poiseuille's flow, assuming a quasi‐steady parabolic velocity distribution, despite evidence that more rapidly time‐varying, pulsatile blood flow during each cardiac cycle modulates flow‐mediated dilation (FMD) in large arteries of healthy subjects. More exact and accurate models based on the well‐established Womersley solution for rapidly changing blood flow have not been adopted clinically, potentially because the Womersley solution relies on the local pressure gradient, which is difficult to measure non‐invasively. We have developed an open‐source method for automatic reconstruction of unsteady, Womersley‐derived velocity profiles, and WSS in conduit arteries. The proposed method (available online at https://doi.org/10.5281/zenodo.7576408) requires only the time‐averaged diameter of the vessel and time‐varying velocity data available from non‐invasive imaging such as Doppler ultrasound. Validation of the method with subject‐specific computational fluid dynamics and application to synthetic velocity waveforms in the common carotid, brachial, and femoral arteries reveals that the Poiseuille solution underestimates peak WSS 38.5%–55.1% during the acceleration and deceleration phases of systole and underestimates or neglects retrograde WSS. Following evidence that oscillatory shear significantly augments vasodilator production, it is plausible that mischaracterization of the shear stimulus by assuming parabolic flow leads to systematic underestimates of important biological effects of time‐varying blood velocity in conduit arteries.

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3