Nephron deficit and low podocyte density increase risk of albuminuria and glomerulosclerosis in a model of diabetes

Author:

Gazzard Sarah E.1,van der Wolde James1,Haruhara Kotaro12,Bertram John F.13ORCID,Cullen‐McEwen Luise A.1ORCID

Affiliation:

1. Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute Monash University Melbourne Australia

2. Division of Nephrology and Hypertension, Department of Internal Medicine The Jikei University School of Medicine Tokyo Japan

3. ARC Training Centre for Cell and Tissue Engineering Technologies Melbourne Australia

Abstract

AbstractPodocytes are terminally differentiated epithelial cells in glomeruli. Podocyte injury and loss are features of many diseases leading to chronic kidney disease (CKD). The developmental origins of health and disease hypothesis propose an adverse intrauterine environment can lead to CKD later in life, especially when a second postnatal challenge is experienced. The aim of this study was to examine whether a suboptimal maternal environment would result in reduced podocyte endowment, increasing susceptibility to diabetes‐induced renal injury. Female C57BL/6 mice were fed a low protein diet (LPD) to induce growth restriction or a normal protein diet (NPD) from 3 weeks before mating until weaning (postnatal Day 21, P21) when nephron and podocyte endowment were assessed in one male and one female offspring per litter. Littermates were administered streptozotocin or vehicle at 6 weeks of age. Urinary albumin excretion, glomerular size, and podometrics were assessed following 18 weeks of hyperglycemia. LPD offspring were growth restricted and had lower nephron and podocyte number at P21. However, by 24 weeks the podocyte deficit was no longer evident and despite low nephron endowment neither albuminuria nor glomerulosclerosis were observed. Podocyte number was unaffected by 18 weeks of hyperglycemia in NPD and LPD offspring. Diabetes increased glomerular volume reducing podocyte density, with more pronounced effects in LPD offspring. LPD and NPD diabetic offspring developed mild albuminuria with LPD demonstrating an earlier onset. LPD offspring also developed glomerular pathology. These findings indicate that growth‐restricted LPD offspring with low nephron number and normalized podocyte endowment were more susceptible to alterations in glomerular volume and podocyte density leading to more rapid onset of albuminuria and renal injury than NPD offspring.

Publisher

Wiley

Subject

Physiology (medical),Physiology

Reference71 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3