FGFR regulator Memo1 is dispensable for FGF23 expression by osteoblasts during folic acid‐driven kidney injury

Author:

Bartos Katalin123,Moor Matthias B.123ORCID

Affiliation:

1. Department of Nephrology and Hypertension Bern University Hospital Bern Switzerland

2. Department of Biomedical Research University of Bern Bern Switzerland

3. National Center of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich Zurich Switzerland

Abstract

AbstractLoss of the mediator Of cell motility 1 (Memo1) in mice caused kidney disease and a bone disease with diminished osteoblast and osteoclast biomarkers in serum, resembling alterations occurring in adynamic bone disease in humans with chronic kidney disease or in Klotho‐deficient mice. Here, we investigated whether Memo1 expression in osteoblasts is required for normal bone structure and FGF23 expression. We deleted Memo1 in the osteoblast–osteocyte lineage in Memo fl/fl mice using a Cre under Col1a1 promotor to obtain osteoblast‐specific knockout (obKO) mice. We studied organs by micro‐computed tomography, qPCR, and western blot. We challenged mice with folic acid for acute kidney injury (AKI) and analyzed organs. Memo obKO were viable without changes in gross anatomy, serum electrolytes, or circulating FGF23 concentrations compared to controls. Memo1 expression was blunted in bones of Memo obKO, whereas it remained unchanged in other organs. Micro‐CT revealed no differences between genotypes in bone structure of vertebrae, femur, and tibia. During AKI, Fgf23 expression in calvaria, and renal transcriptional changes were comparable between genotypes. However, renal injury marker expression, circulating FGF23, and parathyroid hormone revealed a sex difference with more severely affected females than males of either genotype. The present data imply that Memo1 in osteoblasts is dispensable for bone structure and expression of Fgf23. Moreover, we found evidence of potential sex differences in murine folic acid nephropathy similar to other experimental models of renal injury that are important to consider when using this experimental model of renal injury.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3