Evaluation of ventricular–vascular coupling with critical care metrics: An in silico approach

Author:

Mulligan Lawrence J.12ORCID,Ungerleider Justin2,Friedman Adam2,Sanders Benjamin2,Thrash Julian3,Ewert Daniel4,Mitrev Ludmil12,Hill Jeffrey C.5

Affiliation:

1. Department of Anesthesiology Cooper University Hospital Camden New Jersey USA

2. Cooper Medical School of Rowan University Camden New Jersey USA

3. North Dakota State University Fargo North Dakota USA

4. University of North Dakota Grand Forks North Dakota USA

5. School of Medical Imaging and Therapeutics Massachusetts College of Pharmacy and Health Sciences University Worcester Massachusetts USA

Abstract

AbstractMean arterial pressure and cardiac output provide insufficient guidance for the management of intraoperative hypotension (IOH). In silico models offer additional insights into acute changes in hemodynamic parameters that may be encountered during IOH. A computational model (CM) generated parameters quantifying ventricular–vascular coupling, and pressure–volume construct across levels of aortic compliance (CA). We studied how a loss from normal‐to‐stiff CA impacts critical care metrics of hemodynamics during vascular occlusion. Pulse pressure (PP), end‐systolic pressure (Pes), arterial compliance (Art‐ca), arterial elastance (Art‐ea), and dynamic arterial elastance (Eadyn), along mechanical efficiency (ME) were measured at five levels of CA. A loss in CA impacted all variables. During steady‐state conditions, PP, Pes, and stroke work increased significantly as CA decreased. Art‐ca decreased and Art‐ea increased similarly; Eadyn increased and ME decreased. During a decrease in preload across all CA levels, arterial dynamics measures remained linear. The CM demonstrated that a loss in CA impacts measures of arterial dynamics during steady‐state and transient conditions and the model demonstrates that critical care metrics are sensitive to changes in CA. While Art‐ca and Art‐ea were sensitive to changes in preload, Eadyn did not change.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3