Affiliation:
1. Visuo‐Motor Systems Laboratory, Department of Biology Ferdowsi University of Mashhad Mashhad Iran
Abstract
AbstractThe marmoset is a small‐bodied primate with behavioral capacities and brain structures comparable to macaque monkeys and humans. Its amenability to modern biotechnological techniques like optogenetics, chemogenetics, and generation of transgenic primates have attracted neuroscientists' attention to use it as a model in neuroscience. In the past decade, several laboratories have been developing and refining tools and techniques for performing behavioral and electrophysiological experiments in this new model. In this regard, we developed a protocol to acclimate the marmoset to sit calmly in a primate chair; a method to calibrate the eye‐tracking system while marmosets were freely viewing the screen; and a procedure to map motor field of neurons in the SC in freely viewing marmosets. Using a squeeze‐walled transfer box, the animals were acclimatized, and chair trained in less than 4 weeks, much shorter than what other studies reported. Using salient stimuli allowed quick and accurate calibration of the eye‐tracking system in untrained freely viewing marmosets. Applying reverse correlation to spiking activity and saccadic eye movements, we were able to map motor field of SC neurons in freely viewing marmosets. These refinements shortened the acclimation period, most likely reduced stress to the subjects, and allowed more efficient eye calibration and motor field mapping in freely viewing marmosets. With a penetration angle of 38 degrees, all 16 channels of the electrode array, that is, all recorded neurons across SC layers, had overlapping visual receptive and motor fields, indicating perpendicular penetration to the SC.
Funder
Ferdowsi University of Mashhad
Cognitive Sciences and Technologies Council
Subject
Physiology (medical),Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献