Acclimatizing and training freely viewing marmosets for behavioral and electrophysiological experiments in oculomotor tasks

Author:

Saghravanian Seyed Javad1,Asadollahi Ali1ORCID

Affiliation:

1. Visuo‐Motor Systems Laboratory, Department of Biology Ferdowsi University of Mashhad Mashhad Iran

Abstract

AbstractThe marmoset is a small‐bodied primate with behavioral capacities and brain structures comparable to macaque monkeys and humans. Its amenability to modern biotechnological techniques like optogenetics, chemogenetics, and generation of transgenic primates have attracted neuroscientists' attention to use it as a model in neuroscience. In the past decade, several laboratories have been developing and refining tools and techniques for performing behavioral and electrophysiological experiments in this new model. In this regard, we developed a protocol to acclimate the marmoset to sit calmly in a primate chair; a method to calibrate the eye‐tracking system while marmosets were freely viewing the screen; and a procedure to map motor field of neurons in the SC in freely viewing marmosets. Using a squeeze‐walled transfer box, the animals were acclimatized, and chair trained in less than 4 weeks, much shorter than what other studies reported. Using salient stimuli allowed quick and accurate calibration of the eye‐tracking system in untrained freely viewing marmosets. Applying reverse correlation to spiking activity and saccadic eye movements, we were able to map motor field of SC neurons in freely viewing marmosets. These refinements shortened the acclimation period, most likely reduced stress to the subjects, and allowed more efficient eye calibration and motor field mapping in freely viewing marmosets. With a penetration angle of 38 degrees, all 16 channels of the electrode array, that is, all recorded neurons across SC layers, had overlapping visual receptive and motor fields, indicating perpendicular penetration to the SC.

Funder

Ferdowsi University of Mashhad

Cognitive Sciences and Technologies Council

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3