Influence of a Non-ionic Surfactant on the Release of Rhodamine B from Poly(vinyl) Alcohol/Polyoxalate/Span-80 Composite Nanofibers Prepared by Emulsion Electrospinning

Author:

Phromviyo Nutthakritta,Chompoosor Apiwat,Teerasong Saowapak

Abstract

Controlling drug release using a nanocomposite method is crucial; however, burst release must be avoided in order to obtain effective controllable drug release. In this study, poly(vinyl) alcohol/polyoxalate/Span-80 (PVA/ POX/ Span-80) composite nanofibers loaded with Rhodamine B were produced using emulsion electrospinning. The objective of this work was to evaluate the cooperative roles of POX and Span-80 on nanofibrous scaffold stability and drug release regulation by monitoring Rhodamine B release performance from electrospun composite nanofibers. The microstructure and hydrophilic properties of the emulsion electrospun nanofibers were studied using scanning electron microscopy (SEM), water contact angle, and swelling tests. According to the results, increasing the POX content had a significant effect on the size of nanofibers. The water contact angles increased as the POX content increased. The release of Rhodamine B was governed by a two-stage diffusion mechanism that was greatly influenced by PVA/POX ratios and Span-80. To compare release behavior, non-emulsion electrospun nanofibers without Span-80 were prepared as control samples. Emulsion nanofibers were found to release at a slower rate than non-emulsion nanofibers. The in vitro release profiles revealed that Rhodamine B was released from emulsion electrospun fibers in a sustainable manner and that no initial burst release was observed. These findings imply that emulsion electrospun nanofibers can potentially be used to deliver drugs, nutraceuticals, and fragrances in a prolonged manner

Publisher

King Mongkut's Institute of Technology Ladkrabang

Subject

Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3