Taxonomic and ecological significance of seed morphology and ultrastructure in species of Lotus formerly classified in Dorycnium (Leguminosae – Loteae)

Author:

Kramina Tatyana E.,Polevova Svetlana V.

Abstract

Seed morphology and ultrastructure of Lotus species from sections Dorycnium (L. dorycnium and L. graecus), Bonjeanea (L. rectus, L. hirsutusand L. strictus) and Lotus (L. corniculatus) have been studied using light and scanning electron microscopy. The seeds of studied species have a conservative structure typical for most Papilionoideae. Seed size, shape and color only partially allow distinguishing species in the studied group. The most morphologically distinguishable seeds are those of members of the polyphyletic section Bonjeanea, with L. rectus having the smallest and L. strictus the largest seeds. Seed size ranges in the species of the section Dorycnium overlap both between the members of the section and with seeds of L. hirsutus (section Bonjeanea). Seed surface ultrastructure around the hilum is very stable among studied species, whereas that on the lateral seed side is more variable. The types of surface sculpture on the lateral seed side do not strongly correlate with taxonomic position of species, but some correlations with eco-geographical patterns can be traced. The type of seed surface micromorphology with inconspicuous primary sculpture and thick secondary cuticular deposits was revealed in taxa, which distribution is connected with the Mediterranean region (L. hirsutus, L. dorycnium subsp. gracilis and partially L. rectus). Foveolate-papillose primary sculpture with thin secondary cuticular deposits is typical for species occurring in milder climate (L. corniculatus, L. strictus, L. graecus). Studied species can be subdivided into two groups by endosperm thickness. We believe that thin endosperm revealed in L. strictus and L. corniculatus may be a trait connected with the acceleration of development when spreading from the Mediterranean to the temperate climatic zone.

Publisher

Altai State University

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3