The Method of Local Approximations in the Construction of High-Precision Small-dimensional MgFE for the Calculation of Composite Bodies

Author:

Matveev A.D.

Abstract

The method of multigrid finite elements is effectively used to analyze the stress state in composite bodies (CB). When constructing a multigrid finite element (MgFE), briefly a standard MgFE, using known procedures, a fine grid, and large ones nested in a fine one are used. The fine grid is generated by partitioning, which takes into account the heterogeneous structure of the MgFE, large grids are used to reduce its dimension. For a standard MgFE, it is characteristic that every large grid and the corresponding approximations of displacements are determined throughout its entire area. This leads to an increase in the dimension of the standard MgFE when constructing high-order approximations on large grids, which are used to increase its order of accuracy. Standard high-precision MgFE, i.e. of high order of accuracy, have a large dimension, which makes their application difficult. In this paper, a method of local approximations (MLA) for constructing high-precision small-dimensional MgFE (short — small-sized MgFE) is proposed. Such MgFE are used to calculate elastic CB and are designed on the basis of standard. The main idea of the MLA is that local approximations of high-order displacements are determined on large grids in the central part of the region of a small-sized MgFE, and in the vicinity of the boundary of the region — of a small order, which allows using various local approximations to vary the dimension and order of accuracy of a small-sized MgFE. Two approaches to the construction of small-sized MgFE are shown, in the case of their complex shape, forming finite elements are used. Calculations show that small-sized MgFE generate stresses in the CB, the errors of which are 15÷50 smaller than the errors of similar stresses corresponding to standard MgFE, i.e. small-sized MgFE are more effective than standard ones. The use of smallsized MgFE in calculations makes it possible to determine stresses with a small error for large CB partitions.

Publisher

Altai State University

Subject

General Medicine

Reference37 articles.

1. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. Киев, 1975.

2. Биргер И.А., Шорр Б.Ф., Иосилевич Г.Б. Расчет на прочность деталей машин. М., 1993.

3. Москвичев В.В. Основы конструкционной прочности технических систем и инженерных сооружений. Швосибирск, 2002.

4. Матвеев А.Д. Расчет упругих конструкций с применением скорректированных условий прочности // Известия Алт. гос. ун-та. Серия: Математика и механика. 2017. № 4. Doi: 10.14258/izvasu(2017)4-21.

5. Zienkiewicz O.C., Taylor R.L., Zhu J.Z. The finite element method: its basis and fundamentals. Oxford: Elsevier Butterworth-Heinemann, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3