Geometry of Nonholonomic Kenmotsu Manifolds

Author:

Bukusheva A.V.

Abstract

The concept of the intrinsic geometry of a nonholonomic Kenmotsu manifold M is introduced. It is understood as the set of those properties of the manifold that depend only on the framing  of the D^ distribution D of the manifold M, on the parallel transformation of vectors belonging to the distribution D along curves tangent to this distribution. The invariants of the intrinsic geometry of the nonholonomic Kenmotsu manifold are: the Schouten curvature tensor; 1-form η generating the distribution D; the Lie derivative  of the metric tensor g along the vector field ; Schouten — Wagner tensor field P, whose components in adapted coordinates are expressed using the equalities . It is proved that, as in the case of the Kenmotsu manifold, the Schouten — Wagner tensor of the manifold M vanishes. It follows that the Schouten tensor of a nonholonomic Kenmotsu manifold has the same formal properties as the Riemann curvature tensor. It is proved that the alternation of the Ricci — Schouten tensor coincides with the differential of the structural form. This property of the Ricci — Schouten tensor is used in the proof of the main result of the article: a nonholonomic Kenmotsu manifold cannot carry the structure of an η-Einstein manifold.

Publisher

Altai State University

Subject

General Medicine

Reference12 articles.

1. Букушева А.В. О тензоре Схоутена — Вагнера неголономного многообразия Кенмоцу // Труды семинара по геометрии и математическому моделированию. 2019. № 5.

2. Кириченко В.Ф. О геометрии многообразий Кенмоцу // Доклады Академии наук. 2001. Т. 380. № 5.

3. Абу-Салеем А., Рустанов А.Р, Мелехина Т.Л. Обобщенные многообразия Кенмоцу постоянного типа // Чебышевский сборник. 2019. Т. 20. № 2. DOI: 10.22405/22268383-2019-20-2-7-21.

4. Букушева А.В. Многообразия Кенмоцу с распределением нулевой кривизны // Вестник Томского гос. ун-та. Математика и механика. 2020. № 64. DOI: 10.17223/19988621/64/1.

5. Kenmotsu K. A class of almost contact Riemannian manifolds // Tohoku Math. J. 1972. Vol. 24.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometry of sub-Riemannian manifolds equipped with a quasi-semi-Weyl structure;Topology - Recent Advances and Applications [Working Title];2023-03-25

2. On connections with torsion on nonholonomic para-Ken­motsu manifolds;Differential Geometry of Manifolds of Figures;2023

3. On the geometry of generalized nonholonomic Kenmotsu manifolds;Differential Geometry of Manifolds of Figures;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3