Author:
Vylegzhanin D.V.,Klepikov P.N.,Khromova O.P.
Abstract
The problem of restoring a (pseudo)Riemannian manifold from a given Ricci operator was studied in the papers of many mathematicians. This problem was solved by O. Kowalski and S. Nikcevic for the case of three-dimensional locally homogeneous Riemannian manifolds. The work of G. Calvaruso and O. Kowalski contains the answer to the question above for the case of three –dimensional locally homogeneous Lorentzian manifolds.
For the four-dimensional case, similar studies were carried out only in the case of Lie groups with a left-invariant Riemannian metric. The works of A.G. Kremlyov and Yu.G. Nikonorov presented the possible signatures of the eigenvalues of the Ricci operator. However, the question of recovering a four-dimensional Lie group with a left-invariant Riemannian metric from a given Ricci operator remains open.
This paper is devoted to the study of the eigenvalues of the Ricci operator on four-dimensional locally homogeneous (pseudo)Riemannian manifolds with a four-dimensional isotropy subgroup. An algorithm for calculating the eigenvalues of the Ricci operator is presented. A theorem on the restoration of such manifolds from a given Ricci operator is proved. It is established that such possibility can happen only in the case when the prescribed operator is diagonalizable and has a unique eigenvalue of multiplicity four.