On the Geometry of Almost Quasi-Para-Sasakian Manifolds Equipped with a Canonical N-Connection

Author:

Galaev S.V.,Kokin E.A.

Abstract

This paper introduces the concept of an almost quasi-para-Sasakian manifold, which differs from the previously known quasi-para-Sasakian structure in that it is not a normal structure. Instead, it possesses a weaker property called almost normality, similar in properties to integrable tensor structures. Several examples are given, including an almost quasi-para-Sasakian structure defined on the distribution of zero curvature of a sub-Riemanni-an manifold of contact type. An extended connection with skew-symmetric torsion is defined on an almost quasi-para-Sasakian manifold, which is unique and defined using an intrinsic connection and an endomorphism that preserves the distribution of an almost (para-)contact manifold. The paper proves that the extended connection is a metric connection, and it is also demonstrated that an almost quasi-para-Sasakian manifold can be an n-Einstein manifold with respect to an extended connection with skew-symmetric torsion, provided certain conditions are met.

Publisher

Altai State University

Subject

General Medicine

Reference16 articles.

1. Галаев С.В. Почти контактные метрические пространства с N-связностью // Известия Саратовского ун-та. Новая серия: Математика. Механика. Информатика. 2015. Т. 15. №3. DOI: 10.18500/1816-9791-2015-15-3-258-264.

2. Галаев С.В. Геометрическая интерпретация тензора кривизны Вагнера для случая многообразия с контактной метрической структурой // Сибирский математический журнал. 2016. Т. 57. № 3. DOI: 10.17377/smzh.2016.57.310.

3. Галаев С.В. Гладкие распределения с допустимой ги-перкомплексной псевдоэрмитовой структурой // Вестник Башкирского ун-та. 2016. Т. 21. № 3.

4. Agricola I., Ferreira A.C. Einstein manifolds with skew torsion // Q. J. Math. 2014. Vol. 65. № 3. DOI: 10.1093/qmath/ hat050.

5. Friedrich T., Ivanov S. Parallel spinors and connections with skew-symmetric torsion in string theory // AsianJ. Math. 2002. Vol. 6. https://doi.org/10.48550/arXiv.math/0102142.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3