Existence of a Weak Solutionto the Two-Dimensional Filtration Problem in a Thin Poroelastic Layer

Author:

Gilev P.V.,Papin A.A.

Abstract

The paper considers a mathematical model of the joint motion of two immiscible incompressible fluids in a poroelastic medium. This model is a generalization of the classical Musket-Leverett model, in which porosity is considered to be a given function of the spatial coordinate. The model under study is based on the mass conservation equations for liquids and the porous skeleton, Darcy's law for liquids, which takes into account the movement of the porous skeleton, the Laplace formula for capillary pressure, the Maxwell-type rheological equation for porosity, and the "system as a whole" equilibrium condition. In the thin layer approximation, the original problem is reduced to the successive determination of the porosity of the solid skeleton and its velocity. Then an elliptic-parabolic system is derived for the “reduced pressure” and saturation of the wetting phase. Its solution is understood in a generalized sense due to the degeneration on the solution of the equations of the system. The proof of the existence theorem is carried out in four stages: regularization of the problem, proof of the physical maximum principle for saturation, construction of Galerkin approximations, passage to the limit in regularization parameters based on the method of compensated compactness.

Publisher

Altai State University

Subject

General Medicine

Reference16 articles.

1. Папин А.А., Подладчиков Ю.Ю. Изотермическое движение двух несмешиваю-щихся жидкостей в пороупругой среде // Известия Алт. гос. ун-та. 2015. № 1-2. DOI: 10.14258/izvasu(2015) 1.2-24

2. Connolly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelasticrock // Geodin. Acta. 1998. Vol. 11.

3. Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. Новосибирск. 1983.

4. Сибин А.Н. Математическая модель поршневого вытеснения жидкости в упругой пористой среде // Сборник трудов всероссийской конференции по математике «МАК-2016». Материалы молодежной прикладной IT школы «Математическое моделирование в экологии, агроэкологии и природопользовании». 2016.

5. Гилев П.В., Папин А.А. Исследование задачи двухфазной фильтрации в пороупругой среде в приближении двумерной ячейки Хеле-Шоу // Сборник тезисов евразийской конференции по прикладной математике. Новосибирск, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3