Rayleigh — Benard problem for Polymer Solution

Author:

Pukhnachev V.V.,Frolovskaya O.A.

Abstract

There are three mathematical models describing the motion of aqueous solutions of polymers: the second grade fluid model (Rivlin — Eriksen), the hereditary model (Voitkunsky — Amfilokhiev — Pavlovsky), and its asymptotic simplification (Pavlovsky). This work considers the problem of fluid equilibrium stability in a horizontal fluid layer heated from below or from above. Also, equations of thermal gravitational convection for all three models are derived. Three types of boundary conditions are considered: two solid boundaries; the lower solid boundary and the upper free boundary; two free boundaries (the Rayleigh problem). For the case of heating from below, the principle of perturbation monotonicity is established that ensures the spectral problem eigenvalues to be of real type. This greatly simplifies the determination of the critical Rayleigh numbers. It turned out that these numbers coincide with the critical Rayleigh numbers in the classical Rayleigh — Benard problem. In the case of heating from above at large temperature gradients, the perturbation decrements become complex, but their real parts are negative. The conclusion that the relaxation properties of a second grade fluid and an aqueous solution of polymers do not lead to a change in the critical Rayleigh number may seem strange at first glance. According to our assumption, it is explained by the base state of the liquid being a state of rest.

Publisher

Altai State University

Subject

General Medicine

Reference12 articles.

1. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М., 1972.

2. Straughan B. Energy stability in the Benard problem for a fluid of second grade // Journal of Applied Mathematics and Physics. 1983.Vol. 34.

3. Bouteraa M., Vare T., Nouar C., Becker S., Ouhajjou J. Rayleigh-Benard convection in non-Newtonian fluids: Experimental and theoretical investigations // Physics of Fluids. 2021. Vol. 33. Doi:10.1063/5.0070983

4. Rivlin R.S., Ericksen J.L. Stress-deformation relations for isotropic materials // Arch. Rational Mech. Anal. 1955. Vol. 4.

5. Войткунский Я.И., Амфилохиев В.Б., Павловский В.А. Уравнения движения жидкости с учетом ее релаксационных свойств // Труды ЛКИ. 1970. Вып. LXIX.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3