Database Reconciliation in Applied Interval Analysis

Author:

Ergaliev E.K.,Madiyarov M.N.,Oskorbin N.M.,Smolyakova L.L.

Abstract

The article deals with the problem of the reconciliation of observation results, which arises when solving problems of interval analysis of a database. It is found that the values of the set of input variables and the output variable are consistent if the graph of the desired dependence is located at the inner points of the interval hyper-rectangle in each observation. In this case, it is proposed to use special solutions of interval systems of linear algebraic equations (ISLAU) to analyze the data of linear processes. However, in real and model conditions, the specified property of the database is not always fulfilled a priori. In these cases, it is proposed to use the principle of robust estimation: inconsistent observations should either be excluded from the sample or adjusted. This paper presents the results of the study of these methods of matching the used experimental database on model linear processes under conditions when the basic assumptions of interval estimation of dependencies are fulfilled. In addition, variant computational experiments have been investigated to reveal the possibility of increasing the accuracy of interval analysis due to preliminary correction of observations, including the possibility of guaranteed estimation of the sought dependences.

Publisher

Altai State University

Subject

General Medicine

Reference14 articles.

1. Мадияров М.Н., Оскорбин Н.М., Суханов С.И. Примеры интервального анализа данных в задачах моделирования процессов // Известия Алт. гос. ун-та. 2018. № 1 (99). DOI: 10.14258/izvasu(2018)1-20.

2. Канторович Л.В. О некоторых новых подходах к вычислительным методам и обработке наблюдений // Сибирский математический журнал. 1962. Т. 3. № 5.

3. Шарый С.П. Конечномерный интервальный анализ. Новосибирск, 2017.

4. Жолен Л. Прикладной интервальный анализ. М. : Ижевск, 2005.

5. Gutowski M.W. Interval experimental data fitting. In: Liu, J.P. (ed.): Focus on 6. Numerical Analysis. Nova Science, New York, NY, USA (2006). https://doi. org/10.13140/2.1.5156.3520.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3