Author:
Ivanov Yu.F.,Yuriev A.A.,Kormyshev V.E.,Chen X.,Kosterev V.B.,Gromov V.E.
Abstract
The quantitative estimation of strengthening mechanisms of rails’ surface layer is carried out on the basis of regularities and formation mechanisms of structure-phase states revealed by the methods of modern physical materials science. It is performed at different depths of the rail head along the central axis and fillet of differentially quenched 100-meter rails after the extremely long-term operation (gross passed tonnage of 1411 mln tons). A long-term operation of rails is accompanied by the formation of structural constituent gradient consisting of a regular change in the relative content of lamellar pearlite, fractured pearlite, the structure of ferrite-carbide mixture, scalar, and excess dislocation density along the cross-section of the rail head. As the distance to the rail fillet surface decreases, the relative content of metal volume with lamellar pearlite decreases. However, the relative content of metal volume with the presence of the fractured pearlite structure and ferrite-carbide mixture increases. The contributions caused by the matrix lattice friction, intraphase boundaries, dislocation substructure, presence of carbide particles, internal stress fields, solid-solution strengthening, pearlite component of steel structure are estimated. It is shown that the main mechanism of strengthening in the surface layer is due to the interaction of moving dislocations with low-angle boundaries of nanometer dimensional fragments and subgrains. The main dislocation strengthening mechanism in a near-surface layer at a depth of 2-10 mm is due to the interaction of moving dislocations with immobile ones.
Reference49 articles.
1. Gromov V.E., Peregudov O.A., Ivanov Yu.F., Konovalov S.V, Yuriev A.A. Evolution of structural-phase states of rail metal in long-term operation. Novosibirsk, 2017.
2. Gromov V.E., Ivanov Yu.F., Yuriev A.B., Morozov K.V Microstructure of quenched rails. Cambridge, 2016.
3. Ivanisenko Yu., Fecht H.J. Microstructure modification in the surface layers of railway rails and wheels // Steel tech. 2008. Vol. 3. № 1.
4. Ivanisenko Yu., Maclaren I., Souvage X., Valiev R.Z., Fecht H.J. Shear-induced α → γ transformation in nanoscale Fe-C composite // Acta Mater. 2006. Vol. 54. № 6. URL: https://doi.org/10.1016/j.actamat.2005.11.034.
5. Seo J.-W, Jun H.-K., Kwon S.-J., Lee D.-H. Rolling contact fatigue and wear of two different rail steels under rolling-sliding contact // International Journal of Fatigue. 2016. Vol. 83. URL: https://doi.org/10.1016/j.ijfatigue2015.10.012.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Strengthening mechanisms of rail steel under compression.;Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information;2023-09-25
2. Evaluation of the Mechanisms of Compression Hardening of Rail Steel;Physics of the Solid State;2022-10