SYNTHESIS AND PROPERTIES OF SELENIUM NANOPARTICLES IN NATURAL POLYSACCHARIDES MATRIX

Author:

Panov Denis AleksandrovichORCID,Katsev Andrew MoiseevichORCID,Omel'chenko Aleksandr Vladimirovich

Abstract

Selenium nanoparticles were obtained by reduction of sodium selenite in aqueous solutions of nonstoichiometric alginate-chitosan polyelectrolyte complexes. Amorphous red nanosized selenium, formed as a result of the reaction, were characterized by maximum absorption at 256 nm. The process of formation and morphological characteristics of them were studied at different mass ratio of the components in the selenium-polysaccharide complex (in the range from 0.01 to 0.10). The morphological, dimensional, and spectral characteristics of obtained selenium nanoparticles were determined by transmission electron microscopy (TEM) and UV spectroscopy. The sample of nanoselenium was shown to consist of single nanoparticles, mostly spherical or partially elongated shapes, with an average size of 40 nm. The replacement of alginate (no more than 10%) with chitosan causes a significant increase in the stability of selenium nanoparticles, preventing them against aggregation and color change for three months. The biotoxicity of the synthesized nanoselenium was studied using Aliivibrio fischeri F1 bioluminescent assay. Selenium nanosamples were found to have no any inhibitory effect on bacterial bioluminescence and growth and thus have neither acute nor chronic biotoxicity. On contrary, sodium selenite, used for a comparison, decreased the bioluminescence of A. fischeri F1 at concentrations more than 100 mg/L. The values of NA2SeO3 half maximal effective concentration (EC50) were measured to be 420-820 mg/L at 15-60 minutes of incubation. Chronic biotoxicity of sodium selenite was manifested at concentrations more than 30 mg/L, and at 300 mg/L and higher led to a complete suppression of A. fischeri F1 growth and bioluminescence. Experimental study of biological properties of obtained selenium nanoparticles revealed an increase in seed germination and vigor of pea (Pisum sativum L.) of Madonna variety and barley (Hordeum vulgare L.) of Kuzen variety, as well as an increase in the dry matter mass of their roots and aerial parts. A high activity of growth processes for the studied crops was noted at a nanoselenium concentration of 20 mg/l.

Publisher

Altai State University

Subject

Organic Chemistry,Plant Science,Biomaterials

Reference30 articles.

1. Reshetnik L.A., Parfenova Ye.O. Ekologiya morya, 2000, vol. 54, pp. 20–25. (in Russ.).

2. Tret'yak L.N., Gerasimov Ye.M. Vestnik Orenburgskogo gosudarstvennogo universiteta, 2007, vol. 79, no. 12, pp. 136–145. (in Russ.).

3. Guillin O.M., Vindry C., Ohlmann T., Chavatte L. Nutrients, 2019, vol. 11(9), p. 2101. DOI: 10.3390/nu11092101.

4. Gromova O.A., Gogoleva I.V. Trudnyy patsiyent, 2007, vol. 5, no. 14, pp. 25–30. (in Russ.).

5. Golubkina N.A., Poluboyarinov P.A., Sindireva A.V. Voprosy pitaniya, 2017, vol. 86, no. 2, pp. 63–69. (in Russ.).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3