SEASONAL DYNAMICS OF ARGININE CONTENT IN PINUS SYLVESTRIS L. NEEDLES DEPENDING ON THE TIM-ING OF NITROGEN AND BORON APPLICATION

Author:

Чернобровкина (Chernobrovkina) Надежда (Nadezhda) Петровна (Petrovna),Робонен (Robonen) Елена (Elena) Вильямовна (Vil'yamovna),Репин (Repin) Андрей (Аndrej) Владимирович (Vladimirovich),Макарова (Makarova) Тамара (Tamara) Николаевна (Nikolaevna)

Abstract

The annual cycle of arginine content in young and 1-year-old needles of 10-year-old Scots pine (Pinus sylvestris L.) was studied as related to various periods of nitrogen deposition into the soil at a high dose (300 kg/ha) and boron deposition in the optimal dose (3 kg/ha). Fertilizers were applied once, in June, July or August. The amino acid levels in young and 1-year-old needles of control plants remained similar throughout the study period (0.7±0.1 – 1.3±0.1 µmol/g absolute dry matter), with the peak in May. The placement of the fertilizers in the soil at three instances considerably augmented arginine content in young and 1-year-old needles during the first annual cycle following the impact. Nitrogen and boron application to the soil in June had the highest effect on arginine accumulation, primarily in young needles. The maximum amino acid levels were 618 ± 60 and 152 ± 15 μmol/g DM, 256 ± 24 and 154 ± 14 μmol/g DM, 132 ± 13 and 76 ± 7 μmol/g DM at the June, July and August fertilization in the young and 1-year-old needles, respectively. The seasonal patterns of arginine accumulation in coniferous plants, as well as the mechanisms through which nitrogen and boron influence this process are discussed.

Publisher

Altai State University

Subject

Organic Chemistry,Plant Science,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3