"PALLADIUM ON COAL" CATALYST OBTAINED BY PYROLYSIS OF POWDER CELLULOSE GRANULES IM-PREGNATED WITH PALLADIUM NITRATE

Author:

Shishmakov Andrey Borisovich,Mikushina Yuliya Vladimirovna,Koryakova Ol'ga Vasil'yevna

Abstract

By pyrolysis of powdered cellulose granules impregnated with palladium nitrate, catalysts of 1–8% Pd / C were obtained. Pyrolysis was carried out in a reactor with a water seal at 600 ° C. Metal reduction was carried out with pyrolysis gases and matrix carbon. It was found that the ash content of powdered cellulose granules is ~ 40 times less than the ash content of sulfate cellulose, from which they were made. It was shown by X-ray phase analysis and electron microscopy that palladium in the catalysts is present in the form of Pd (0) nanoparticles uniformly covering carbon fibers and shapeless massive metal precipitates up to 20 μm in diameter. In catalysts 1–3% Pd / С, nanoparticles 10–40 nm dominate (> 95%), in 8% Pd / С, 20–70 nm. The share of massive metal formations in Pd (1%) / C, Pd (3%) / C and Pd (8%) / C is: ~ 2%, ~ 5% and ~ 60%, respectively. They consist of aggregated spherical particles 0.05–0.15 µm in diameter. XRD palladium oxide was not detected in the catalysts. The presence of palladium nitrate in powdered cellulose during its carbonization has a significant effect on the formation of the carbon matrix. With an increase in the content of palladium nitrate in powdered cellulose, the yield of carbon material decreases and its total porosity increases. Infrared spectroscopy revealed the presence of oxygen-containing ether groups in the carbon matrix of palladium catalysts. The activity of catalysts in the model process of decomposition of hydrogen peroxide increases with increasing dispersion of palladium nanoparticles.

Publisher

Altai State University

Subject

Organic Chemistry,Plant Science,Biomaterials

Reference31 articles.

1. Semikolenov V.A. Uspekhi khimii, 1992, vol. 61, no. 2, pp. 320–331. DOI: 10.1070/RC1992v061n02ABEH000938. (in Russ.).

2. Mironenko R.M., Bel'skaya O.B., Likholobov V.A. Rossiyskiy khimicheskiy zhurnal, 2019, vol. 62, no. 1-2, pp. 141–159. DOI: 10.6060/rcj.2018621-2.12. (in Russ.).

3. Yakukhnov S.A. Razrabotka effektivnogo sposoba polucheniya katalizatorov Pd/C dlya reaktsiy kross-sochetaniya, gidrirovaniya i debenzilirovaniya: dis. … kand. khim. nauk. [Development of an effective method for preparing Pd / C catalysts for cross-coupling, hydrogenation and debenzylation reactions: dis. ... Cand. chem. sciences]. Moscow, 2019, 190 p. (in Russ.).

4. Cini E., Petricci E., Taddei M. Catalysts, 2017, vol. 7(3), 89. DOI: 10.3390/catal7030089.

5. Zou B., Chen X., Xia J., Zhou C. Journal of Chemistry, 2018, article ID 2018743, 9 p. DOI: 10.1155/2018/2018743.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3