DIFFERENTIAL SCANNING CALORIMETRY OF LIQUID VEGETABLE

Author:

Saranov Igor' Aleksandrovich,Rudakov Oleg Borisovich,Polyansky Konstantin Konstantinovich,Kleymenova Natal'ya Leonidovna,Vetrov Aleksey Valer'yevich

Abstract

The thermophysical properties of vegetable oils were studied by differential scanning calorimetry method was used to study the fatty acid composition of vegetable oils liquid at room temperature, such as amaranth (Amaránthus), corn (Zea mays), flax (Línum usitatíssimum), sunflower (Helianthus), rape (Brusss napor), milk thistle (Sílybum mariánum), saffron milk cap (Camelina sativa) and pumpkin (Cucurbita pepo). The temperatures of the endothermic peak maxima and their area on the DSC thermograms of these oils were established as characteristic thermal effects. The interconnection between thermal effects and fatty acid composition are revealed. On the melting curves of liquid vegetable oils, up to 5 endothermic peaks of different intensities were selected in the ranges -80÷-55 °C, -40÷-15 °C, -25÷-8 °C, -19÷+6 °C and -10÷+4 °C. The coordinates of the maxima of these peaks (Ti) and their area (Si) significantly correlate with the content (Wi,%) in the oils, primarily oleic, linoleic and linolenic acids, the total proportion of which in oils is from 75 to 92%. Using the DSC thermograms of rapeseed oil as an example, it is shown that the program separation of DSC peaks allows a multiple increase in the number of analytical signals, an increase in the reliability of identification of the fat phase, and identification of the main fractions of triglycerides. DSC as a method for identifying vegetable oils using modern thermal analysis instruments is simple to sample, has good reproducibility and can be an independent method for identifying and controlling the quality of vegetable oils.

Publisher

Altai State University

Subject

Organic Chemistry,Plant Science,Biomaterials

Reference17 articles.

1. O'Brien R. Zhiry i masla. Proizvodstvo, sostav i svoystvo, primeneniye. [Fats and oils. Production, composition and property, application]. St. Petersburg, 2007, 752 p. (in Russ.).

2. Rudakov O.B., Ponomarev A.N., Polyanskiy K.K., Lyubar' A.V. Zhiry. Khimicheskiy sostav i ekspertiza kachestva. [Fats. Chemical composition and quality examination]. Moscow, 2005, 312 p. (in Russ.).

3. An' V.N., Deyneka V.I., Khiyen Ch.T.N., Deyneka L.A., Rudakov O.B. Sorbtsionnyye i khromatograficheskiye protsessy. 2018, vol. 18, no. 6, pp. 816–824. (in Russ.).

4. Andrikopoulos N.K. Critical reviews in food science and nutrition, 2002, vol. 42, no. 5, pp. 473–505. DOI: 10.1080/20024091054229.

5. Jabeur H., Zribi A., Makni J., Rebai A., Abdelhedi R., Bouaziz M. Journal of agricultural and food chemistry, 2014, vol. 62, no. 21, pp. 4893–4904. DOI: 10.1021/jf500571n.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3