COMPARATIVE STUDIES OF PHYSIC-CHEMICAL PROPERTIES AND STRUCTURE OF COTTON CELLULOSE AND ITS MODIFIED FORMS

Author:

Atahanov Abdumutalib Abdupattaevich,Mamadiyorov Burkhon,Kuzieva Makhliyo,Yugay Svetlana Mikhaylovna,Shahobutdinov Sirozh,Ashurov Nurbek Shodiyevich,Abdurazakov Mukhitdin

Abstract

Comparative studies of the physicochemical properties and structures of cotton cellulose, microcrystalline cellulose, and nanocellulose were carried out using IR, NMR spectroscopy, X-ray diffraction, thermal analysis in order to identify the dependence "particle size - structure - properties". It was revealed that in the series “cotton cellulose – microcrystalline cellulose – nanocellulose” the degree of polymerization decreases (1200, 230, 110 respectively), the degree of crystallinity increases (66%, 72%, 83% respectively). The IR spectra of microcrystalline cellulose and nanocellulose are characterized by sharp peaks (in the range 1000–1500 cm–1) compared with cotton cellulose. The amount of bound water in gels of microcrystalline cellulose and nanocellulose increases with decreasing particle size, the degree of stability of colloidal systems increases with the transition from microcrystalline cellulose to nanocellulose. Nanocellulose and microcrystalline cellulose have relatively smaller mass loss and relatively large temperature ranges of intensive decomposition and their thermal stability is higher than cotton cellulose. It was found that the periodate oxidation rate of nanocellulose is higher than that of microcrystalline cellulose and cotton cellulose. It was established that microcrystalline cellulose is quantitatively susceptible to periodate oxidation in 7–8 hours, and nanocellulose in 0.5–1 hour.

Publisher

Altai State University

Subject

Organic Chemistry,Plant Science,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3