DIATOMITES AND LIGNINS AS MYCOTOXIN ADSORBENTS

Author:

Kocheva Lyudmila Sergeyevna,Karmanov Anatoliy PetrovichORCID,Kanarskiy Alʹbert Vladimirovich,Kanarskaya Zosia Albertovna,Semenov Eduard Ilʹyasovich,Bogdanovich Nikolay Ivanovich

Abstract

Currently, there is a tendency to deepen the mycotoxin problem, which is associated with the global warming and environmental pollution. The results of a study of the sorption capacity of adsorbents samples based on natural materials diatomites and lignins in relation to mycotoxin T-2 are presented. The chemical composition of diatomites of the Inzensk deposit before and after modification is given and the parameters of the surface-porous structure of the samples are established. The isotherms of adsorption and desorption of nitrogen on the surface of diatomites were studied and for the first time it was shown that they belong to the type IV(a) acording to IUPAC classification. The distribution of pores by size was studied and it was established that a significant proportion of the pore space of diatomites are mesopores with an average width of 7–12 nm. The highest adsorption rates of mycotoxin T-2 were established for a diatomite sample subjected to acid modification. Data on the adsorption of mycotoxin T-2 by samples of lignins isolated from the wood of birch Betula verrucosa, stems of rye Secale sp. and cabbage Brassica oleracea are given. The results of the determination of functional groups, elemental and monomeric composition of lignins are presented. It has been established that the adsorption capacity of drugs depends mainly on the peculiarities of the chemical structure of the studied samples. The highest adsorption rates of mycotoxin T-2 are established for lignin isolated from cabbage stems. Comparison of mycotoxin T-2 adsorption, surface porous structure parameters and chemical structure of various samples leads to the conclusion that for both diatomites and lignins, the chemisorption process plays the most important role.

Publisher

Altai State University

Subject

Organic Chemistry,Plant Science,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3