HAZARD FROM ELECTRIFICATION OF MATERIALS, COMPONENTS AND TECHNICAL EQUIPMENT INTENDED FOR USE IN POTENTIALLY EXPLOSIVE ATMOSPHERES

Author:

POPA Catalin Mihai1,PAUN Florin Adrian1,GABOR Dan Sorin1,RADU Mirela Ancuta1,TAZLAUAN Anca Alexandra1

Affiliation:

1. National Institute for Mine Safety and Protection to Explosion - NRDI INSEMEX Petro?ani

Abstract

The continuous development of human society from a technical-economic point of view is closely related to the increase in energy consumption. However, this implies the rapid depletion of existing fossil fuels and an accelerated increase in global pollution. At the moment, to counteract these impediments, one of the most important sources that can be used for the purpose of energy production, without having a negative impact on the environment, is hydrogen. Due to the fact that, when mixed with air, hydrogen can generate potentially explosive atmospheres, it is necessary to adopt and apply protective measures aimed at ensuring an acceptable level of protection in accordance with current regulations. These measures materialize mainly through the use of appropriately protected technical equipment in locations where potentially explosive atmospheres generated by the presence of hydrogen are possible. Some of these equipment�s are provided with non-metallic casings on which the type of protection of the respective equipment depends. That is why, in order to demonstrate the ability of the non-metallic materials that make up the equipment casings, to maintain the specific type of protection after exposure to extreme, positive and negative temperatures, it is of particular importance to determine the thermal endurance of the respective casings by performing laboratory tests. This paper highlights the importance of determining the thermal endurance in the case of equipment with non-metallic casings and non-metallic parts of the casings intended to be used in potentially explosive atmospheres generated by hydrogen, as well as the method and equipment required to perform laboratory tests for its determination.

Publisher

STEF92 Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3