INVESTIGATION OF ORGANIC WASTES CONVERSION INTO USEFUL ENERGY RESOURCES USING PYROLYSIS PROCESS

Author:

David E.1,Kopac J.2,Marinescu R-M3,Armeanu A.1

Affiliation:

1. National Research and Development Institute for Cryogenic and Isotopic Technologies, Rm.Valcea

2. Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana

3. National Institute for Research and Development in Microtechnologies �IMT Bucharest, Ilfov

Abstract

The depletion of fossil fuels is a major concern for the world because of the demand for energy that has increased rapidly with population growth and urbanization. For sustainable development, energy producing industries are trying to find suitable substitutes for petroleum fuel that are environmentally friendly and economically feasible. Biomass ,such as bio-oil and biochar production, could be a possible alternative energy source. Production of biochar and bio-oil from chicken manure(CM) by the pyrolysis process could be a robust approach for organic waste recycling. In this work, experiments were conducted to examine the effect of pyrolysis temperature on the quality of chicken manure biochar (CMB) and to identify the optimal pyrolysis temperature for the conversion of CM into biochar. As the maximum pyrolysis temperature gradually increased from 350 to 650OC, the biochar yield, total nitrogen content in biochar, organic carbon (OC) content, and cation exchange capacity (CEC) of the produced biochar decreased ,while the pH value, ash content and BET surface area of the biochar increased. The generated biochar showed yields of 44.87�61.15% reported to raw material mass, organic carbon of 320�370 g/kg, pH value of 9.4�11.7, BET surface area of 2.65�6.35 m2/g and CEC of 50.21� 31.45 cmolc/kg. The maximum transformation of organic carbon from CM to biochar occurred at 550 OC, however 80.5% of N contained in CM was lost to volatile compounds at this temperature. To produce CMB for use as fertilizer, a temperature value of 350 OC should be selected in pyrolysis process while for environmental applications, 550OC is a suitable temperature value. The obtained results suggest that chicken manure could be used as potential feedstocks for slow pyrolysis process to produce high-value products useful as energy resources.

Publisher

STEF92 Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3