EFFECT OF MOISTURE AND ORGANIC MATTER CONTENT ON N2O EMISSIONS

Author:

Liepa Sindija1,Lepiksone Luize1,Butenaite Dace1,Pilecka-Ulcugaceva Jovita1,Grinfelde Inga1

Affiliation:

1. Latvia University of Life Sciences and Technologies

Abstract

The increasing economic activity reinforces the importance of climate change on a global scale. Together with the development of the economy and the increase in people's well-being, the emissions of greenhouse gases (GHG) which are released into the atmosphere as a result of human activities, also increase. Nitrous oxide (N2O) is one of the main greenhouse and ozone (O3) depleting gases. Seven percent of the anthropogenic greenhouse effect is nitrous oxide. From a molecular perspective, N2O has a 310-fold greater global warming potential than CO2 over a 100-year period. Organic soils are the main source of direct emissions of N2O. Emissions from organic soils account for up to 13% of total N2O emissions in the European Union, although organic soils cover only 7% of the area of the European Union. Totally 10 mixed soil samples from 10 agricultural plots were collected for the experiment. Soil from each agricultural plot was weighed into two buckets to allow measurements for two moisture regimes - wet aerobic conditions and wet anaerobic conditions. The soil was placed in 3-liter buckets, each bucket containing 1.5 kilograms. Measurements were made with the CRDS device Picarro G2508. The equipment measured the concentrations of N2O with an average interval of one second and the emission were calculated using Soil Flux software. Descriptive statistical methods, analysis of variance and Kruskal-Wallis test, and multiple pairwise comparisons using the Steel-Dwass-Critchlow-Fligner procedure were used. By analyzing the data it was obtained that the statistically significant differences (pless than 0.0001) of N2O emissions are between wet organic soil and the other groups.

Publisher

STEF92 Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3