Automated thematic analysis of health information technology (HIT) related incident reports

Author:

Abstract

In this paper, the authors describe a method for exploring the feasibility of using Natural Language Processing (NLP) and Machine Learning (ML) techniques to analyze patient safety incident database reports for themes. We developed a novel thematic analysis strategy to automatically detect keywords and latent themes that describe HIT-related patient safety incidents. The strategy was applied to patient safety reports to test the approach. The efforts by the automated strategy were compared to the efforts by analysts who manually reviewed and identified key words, topics, and themes for the same reports. The computer-based error themes were also compared to the human-determined themes for crosschecking. The manual thematic analysis took about 150 hours to complete on the patient safety reports. The semi-automated approach took only 10% of that time. 95% of the themes extracted from the automated method were aligned with the themes from the manual process. The findings underscore the utility of NLP and ML in identifying thematic patterns embedded in large numbers of unstructured data. The NLP-ML method therefore represents a valuable addition to the tools of detecting and understanding HIT-related errors.

Publisher

Laboratory for Knowledge Management and E-Learning - The University of Hong Kong

Subject

Management of Technology and Innovation,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3