Effect of propolis on pyruvate kinase and superoxide dismutase activities in doxorubicin–induced tissue damage: Molecular docking analysis

Author:

Yilmaz Seval1ORCID,Kaya Emre1ORCID,Yonar Harun2ORCID,Uslu Harun3ORCID

Affiliation:

1. Firat University, Faculty of Veterinary Medicine, Department of Biochemistry. Elazig, Türkiye

2. Selcuk University, Faculty of Veterinary Medicine, Deparment of Biostatistics. Konya, Türkiye

3. Firat University, Faculty of Pharmacy, Department of Pharmaceutical Professional Sciences, Department of Pharmaceutical Chemistry. Elazig, Türkiye

Abstract

This study aimed to investigate the effect of propolis on pyruvate kinase (PK) which is a key enzyme in glycolysis and superoxide dismutase (SOD), an antioxidant enzyme on toxicity induced by DOX in different tissues. Using molecular docking, It was looked into how propolis affected the enzymes responsible for glycolysis and the antioxidant system. There was no application in the first group (control). The second group received 100 mg·kg-1 day of propolis by gavage needle for 7 days, a single dose of 20 mg·kg-1 intraperitoneal DOX to the third group, and propolis+DOX to the fourth group. Two days prior to DOX administration, propolis application began, and it lasted for seven days. PK and SOD activities were determined in liver, heart, kidney, and testis tissues, and molecular docking was applied to ratify the activity of some propolis components (caffeic acid phenethyl ester (CAPE) and Quercetin) on PK and SOD enzymes. When the DOX group was compared with the control group, a decrease in PK and SOD activities were found, and significant difference was found in PK and SOD activities. Administration of DOX decreased PK and SOD activities of liver, heart, kidney, and testis tissues. In conclusion, our study reveals that DOX disrupts glycolysis in rat tissues. CAPE and Quercetin compounds were shown to interact similarly with the cocrystal ligands of PK and SOD. In addition, when the interaction types of these compounds especially on PK and the docking scores obtained were examined, it can be said that they show higher affinity than DOX.

Publisher

Universidad del Zulia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3