Affiliation:
1. Universidad de Guanajuato, Campus Celaya Salvatierra, División de Ciencias Sociales y Administrativas, Departamento de Estudios Sociales. Guanajuato, México
2. Universidad de Guanajuato, Campus Irapuato–Salamanca, Departamento de Arte y Empresa. Guanajuato, México
3. Universidad de Guanajuato, Campus Irapuato–Salamanca, Departamento de Estudios Multidisciplinarios, Guanajuato, México
Abstract
La investigación realizada es de tipo correlacional y estudió la influencia del precio del barril del crudo WTI, el bushel de Maíz y la tonelada de harina de Soya como variables independientes, sobre el precio de la libra de carne de cerdo mexicana, con el objetivo de hallar una función que explique dichas variaciones. Se utilizaron datos promedios mensuales de los precios, recolectados en un periodo de 10 años desde el 01/10/2012 hasta el 01/09/2022. En los datos hay una clara tendencia lineal entre el precio de la carne de cerdo con el precio del barril de crudo WTI, y el precio de la tonelada de harina de soya, más no tan clara o evidente con el precio del bushel de maíz, siendo esta variable excluida del modelo final por ser estadísticamente no significativa (Sig. 0,184). Las variables independientes del modelo final son estadísticamente significativas (Sig. 0,000), con valores de t–student de 4,999 para el crudo WTI y 3,697 para la harina de soya y no existen problemas de colinealidad entre ellas. El modelo obtenido es de regresión lineal múltiple, y tiene como predictores del precio de la carne de cerdo : el precio del barril de crudo WTI y el precio de la tonelada de harina de soya . Pronostica que el precio de la carne de cerdo no puede descender de 15,50 centavos de USD por libra, y puede explicar las variaciones de esta en un 61,4 %. Los residuos estandarizados del modelo presentan una distribución normal, corroborado mediante una prueba de Kolmogorov–Smirnov de 0,071, existiendo un par valores extremos positivos, que pueden informar sobre las circunstancias de las variables para el interés del investigador en los meses de mayo y junio del año 2021.
Reference22 articles.
1. Chuluunsaikan T, Ryu GA, Yoo KH, Rah H, Nasridinov A. Incorporating Deep Learning and News Topic Modeling for Forescating Pork Prices: The Case of South Korea. Agricult. [Internet]. 2020; 10:513. doi: https://doi.org/kmzp
2. Parant, A. World population: Trends and prospects. Futuribles. [Internet]. 2023; 452:63–85. doi: https://doi.org/ktx9
3. El Sitio Porcino. Sector porcino: ¿Qué pasa con los costos de producción? [Internet] Charlbury (GBR): Global Ag Media. 2018 [consultado 20 Ene 2023]; Disponible en: https://bit.ly/3QFN3wv.
4. Campabadal C. Guía técnica para la alimentación de cerdos. Costa Rica: Imprenta Nacional. 2009; p. 7–23.
5. Henke A. La relación entre el precio del petróleo WTI y los índices bursátiles S&P 500 y el S&P 500 del sector energético. [tesis de maestría en Internet]. Argentina: Universidad de San Andrés; 2017 [consultado 18 Feb 2023]. 32 p. Disponible en: https://bit.ly/45dCpke.