Whole exome sequencing identifies a novel mutation in ASPM and ultra-rare mutation in CDK5RAP2 causing Primary microcephaly in consanguineous Pakistani families

Author:

Makhdoom Ehtisham ul Haq,Anwar Haseeb,Baig Shahid Mahmood,Hussain GhulamORCID

Abstract

Background & Objectives: Primary Microcephaly (MCPH) is a rare neurogenetic disease, manifesting congenitally reduced head circumference and non-progressive intellectual disability (ID). To date, twenty-eight genes with biallelic mutations have been reported for this disorder. The study aimed for molecular genetic characterization of Pakistani families segregating MCPH. Methods: We studied two unrelated consanguineous families (family A and B) presenting >2 patients with diagnostic symptoms of MCPH, born to asymptomatic parents. We employed whole-exome sequencing (WES) of probands to find putative causal mutations. The candidate variants were further confirmed and analyzed for co-segregation by Sanger sequencing of all available members of each family. This study was conducted at Government College University, Faisalabad, Pakistan, and Cologne Center for Genomics (CCG), University of Cologne, Germany; during 2017-2020. Results: We identified a novel homozygous variant c.10097_10098delGA, p.(Gly3366Glufs*19) in exon 26 of ASPM gene in family A which presents with moderate intellectual disability, speech impairment, visual abnormalities, seizures, and ptyalism. Family B was found to segregate nonsense, homozygous variant c.448C>T p.(Arg150*) in CDK5RAP2. The patients also exhibited mild to severe seizures without ptyalism that has not been previously reported in patients with mutations in the CDK5RAP2 gene. Conclusion: We report a novel mutation in ASPM and ultra-rare mutation in the CDK5RAP2 gene, both causing primary microcephaly. The study expands the mutational spectrum of the ASPM gene to 212, and also adds to the clinical spectrum of CDK5RAP2 mutations. It also demonstrated the utility of WES in the investigation and genetic diagnosis of genetically heterogeneous disorders like MCPH. These findings would aid in diagnostic and preventive strategies including carrier screening, cascade testing, and genetic counselling. doi: https://doi.org/10.12669/pjms.38.1.4464 How to cite this:Makhdoom EH, Anwar H, Baig SM, Hussain G. Whole exome sequencing identifies a novel mutation in ASPM and ultra-rare mutation in CDK5RAP2 causing Primary microcephaly in consanguineous Pakistani families. Pak J Med Sci. 2022;38(1):84-89.  doi: https://doi.org/10.12669/pjms.38.1.4464 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher

Pakistan Journal of Medical Sciences

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3