Prediction of Hematoma Expansion in Hypertensive Intracerebral Hemorrhage by a Radiomics Nomogram

Author:

Dai Jialing,Liu Dan,Li Xia,Liu Yuyao,Wang Fang,Yang Quan

Abstract

Objective: To develop and validate a radiomics-based nomogram model which aimed to predict hematoma expansion (HE) in hypertensive intracerebral hemorrhage (HICH). Methods: Patients with HICH (n=187) were included from October 2017 to March 2022 in the Yongchuan Affiliated Hospital of Chongqing Medical University. Patients were randomly divided into a training set (n=130) and a validation set (n=57) in a ratio of 7:3. The radiomic features were extracted from the regions of interest (including main hematoma, the surrounding small hematoma(s) and perihematomal edema) in the first CT scan images. The variance threshold, SelectKBest and LASSO (least absolute shrinkage and selection operator), features were selected and the radiomics signature was built. Multivariate logistic regression was used to establish a nomogram based on clinical risk factors and the Rad-score. A receiver operating characteristic (ROC) curve was used to evaluate the generalization of the models’ performance.The calibration curve and the Hosmer-Lemeshow test were used to assess the calibration of the predictive nomogram. And decision curve analysis (DCA) was used to evaluate the prediction model. Results: Thirteen radiomics features were selected to construct the radiomics signature, which has a robust association with HE. The radiomics model found that blend sign was a predictive factor of HE. The radiomics model ROC in the training set was 0.89 (95%CI 0.82-0.96) and was 0.82 (95%CI 0.60-0.93) in the validation set. The nomogram model was built using the combined prediction model based on radiomics and blend sign, and worked well in both the training set (ROC: 0.90[95%CI 0.83-0.96]) and the validation set (ROC: 0.88[95%CI 0.71-0.93]). Conclusion: The radiomic signature based on CT of HICH has high accuracy for predicting HE. The combined prediction model of radiomics and blend sign improves the prediction performance. doi: https://doi.org/10.12669/pjms.39.4.7724 How to cite this: Dai J, Liu D, Li X, Liu Y, Wang F, Yang Q. Prediction of Hematoma Expansion in Hypertensive Intracerebral Hemorrhage by a Radiomics Nomogram. Pak J Med Sci. 2023;39(4):1149-1155. doi: https://doi.org/10.12669/pjms.39.4.7724 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher

Pakistan Journal of Medical Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3