The proliferation and angiogenesis in hemangioma-derived endothelial cells is affected by STC2 medicated VEGFR2/Akt/eNOS pathway

Author:

Ren Shanshan,Yang Yuchang

Abstract

Objective: Stanniocalcin-2 (STC2), a secreted glycoprotein that is involved in the regulation of angiogenesis, was proposed as one of the mechanisms of neovascularization in hemangioma (HA). We aimed to investigate the effect of STC2 on proliferation and angiogenesis in hemangioma-derived endothelial cells. Methods: The hemangioma samples from HA patients with the median age of six months were surgically collected in the Affiliated Hospital of Weifang Medical University from October 2019 to June 2021, and divided into normal skin tissues (n=10), involuting-phase HAs (n=10) and proliferating-phase HAs (n=10) according to the Mulliken classification. The expression of STC2 was detected in involuting-phase HAs and proliferating-phase HAs. Hemangioma endothelial cells (HemEC) were transfected with small interfering RNA (siRNA) specific for STC2, and cell survival and tube formation were analyzed. Results: STC2 expression in proliferating-phase HAs was markedly higher than in the normal skin tissues and involving-phase HAs. Similarly, STC2 expression was higher in HemEC compared to the control human umbilical vein endothelial cells (HUVEC). Knockdown of STC2 slowed the proliferation of HemEC and decreased the expression of proliferating cell nuclear antigen (PCNA) in HemEC. Moreover, knockdown of STC2 in HemEC inhibited vascular endothelial cell angiogenesis and regulated the expression and phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2). Mechanistically, STC2 knockdown attenuated the activation of Akt/eNOS signaling, which was abolished by insulin growth factor-1 (IGF-1), the activator of Akt signaling, accompanying by increased proliferation and tube formation of HemEC. Conclusion: Inhibition of STC2 suppresses HemEC proliferation and angiogenesis by VEGFR2/Akt/eNOS pathway, which warrants further development of STC2-based strategies for HA treatment. doi: https://doi.org/10.12669/pjms.39.4.7384 How to cite this: Ren S, Yang Y. The proliferation and angiogenesis in hemangioma-derived endothelial cells is affected by STC2 medicated VEGFR2/Akt/eNOS pathway. Pak J Med Sci. 2023;39(4):---------. doi: https://doi.org/10.12669/pjms.39.4.7384 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher

Pakistan Journal of Medical Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3